Background: The Step trial raised the possibility that uncircumcised men with pre-existing Ad5 neutralizing antibodies carried an increased risk of HIV infection after vaccination. Thus, understanding Ad seropositivity in humans is important to the development of an AIDS vaccine. Here, we analyze the impact of different Ad5-specific neutralizing antibodies on immune function and clinical outcome.

Methods And Findings: Ad seropositivity in the Step trial volunteers was analyzed using chimeric rAd5/35 vectors to characterize their specificity for Ad5 fiber and non-fiber external (capsid) proteins. Immune responses and HIV seropositivity were correlated with the specificity of Ad5-neutralizing antibodies. Neutralizing antibodies induced by the vaccine in Ad5 seronegative subjects were directed preferentially to Ad5 capsid proteins, although some fiber-neutralizing antibodies could be detected. Pre-vaccination Ad5 serostatus did not affect the capsid-directed response after three vaccinations. In contrast, anti-fiber antibody titers were significantly higher in volunteers who were Ad5 seropositive prior to vaccination. Those Ad5 seropositive subjects who generated anti-capsid responses showed a marked reduction in vaccine-induced CD8 responses. Unexpectedly, anti-vector immunity differed qualitatively in Ad5 seropositive participants who became HIV-1 infected compared to uninfected case controls; Ad5 seropositive participants who later acquired HIV had lower neutralizing antibodies to capsid. Moreover, Ad35 seropositivity was decreased in HIV-infected subjects compared with uninfected case controls, while seroprevalence for other serotypes including Ad14, Ad28 and Ad41 was similar in both groups.

Conclusions: Together, these findings suggest that the case subjects were less immunologically responsive prior to infection. Subjects infected during the Step trial had qualitative differences in immunity that increased their risk of HIV-1 infection independent of vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319553PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033969PLOS

Publication Analysis

Top Keywords

neutralizing antibodies
20
step trial
16
ad5 seropositive
16
ad5
10
pre-existing ad5
8
ad5 capsid
8
capsid ad35
8
hiv-1 infection
8
independent vaccination
8
increased risk
8

Similar Publications

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

The naturally occurring mutation E484D in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can render viral entry ACE2 independent and imdevimab resistant. Here, we investigated whether the cellular proteins ASGR1, DC-SIGN, and TMEM106B, which interact with the viral S protein, can contribute to these processes. Employing S protein-pseudotyped particles, we found that expression of ASGR1 or DC-SIGN jointly with TMEM106B allowed for robust entry of mutant E484D into otherwise non-susceptible cells, while this effect was not observed upon separate expression of the single proteins and upon infection with SARS-CoV-2 wild type (WT).

View Article and Find Full Text PDF

Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!