The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88⁻/⁻ airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320598 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1002641 | DOI Listing |
J Transl Autoimmun
June 2025
Department of Biomedicine, Aarhus University, Denmark.
The family of heterodimeric CD11/CD18 integrins facilitate leukocyte adhesion and migration in a wide range of normal physiologic responses, as well as in the pathology of inflammatory diseases. Soluble CD18 (sCD18) is found mainly in complexes with hydrodynamic radii of 5 and 7.2 nm, suggesting a compositional difference.
View Article and Find Full Text PDFClin Transl Med
February 2025
The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China.
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil.
: Acute lung injury (ALI) is an inflammatory disorder affecting patients in intensive care with high mortality. No specific pharmacological treatment is available. L.
View Article and Find Full Text PDFCells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!