Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism.

J Neurosci

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA.

Published: April 2012

The superior colliculus (SC) is a midbrain structure that integrates visual, somatosensory, and auditory inputs to direct head and eye movements. Each of these modalities is topographically mapped and aligned with the others to ensure precise behavioral responses to multimodal stimuli. While it is clear that neural activity is instructive for topographic alignment of inputs from the visual cortex (V1) and auditory system with retinal axons in the SC, there is also evidence that activity-independent mechanisms are used to establish topographic alignment between modalities. Here, we show that the topography of the projection from primary somatosensory cortex (S1) to the SC is established during the first postnatal week. Unlike V1-SC projections, the S1-SC projection does not bifurcate when confronted with a duplicated retinocollicular map, showing that retinal input in the SC does not influence the topography of the S1-SC projection. However, S1-SC topography is disrupted in mice lacking ephrin-As, which we find are expressed in graded patterns along with their binding partners, the EphA4 and EphA7, in both S1 and the somatosensory recipient layer of the SC. Together, these data support a model in which somatosensory inputs into the SC map topographically and establish alignment with visual inputs in the SC using a gradient-matching mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342701PMC
http://dx.doi.org/10.1523/JNEUROSCI.0240-12.2012DOI Listing

Publication Analysis

Top Keywords

superior colliculus
8
gradient-matching mechanism
8
topographic alignment
8
s1-sc projection
8
alignment
4
alignment multimodal
4
multimodal sensory
4
sensory input
4
input superior
4
colliculus gradient-matching
4

Similar Publications

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice.

Exp Eye Res

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China. Electronic address:

Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury.

View Article and Find Full Text PDF

Learning to fear novel stimuli by observing others in the social affordance framework.

Neurosci Biobehav Rev

January 2025

Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy. Electronic address:

Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL.

View Article and Find Full Text PDF

Deficiency of histamine H receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention.

Neuron

January 2025

Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!