Adult renal progenitor cells (ARPCs) isolated from the human kidney may contribute to repair featuring acute kidney injury (AKI). Bone morphogenetic proteins (BMPs) regulate differentiation, modeling, and regeneration processes in several tissues. The aim of this study was to evaluate the biological actions of BMP-2 in ARPCs in vitro and in vivo. BMP-2 was expressed in ARPCs of normal adult human kidneys, and it was upregulated in vivo after delayed graft function (DGF) of renal transplantation, a condition of AKI. ARPCs expressed BMP receptors, suggesting their potential responsiveness to BMP-2. Incubation of ARPCs with this growth factor enhanced reactive oxygen species (ROS) production, NADPH oxidase activity, and Nox4 protein expression. In vivo, Nox4 was localized in BMP-2-expressing CD133+ cells at the tubular level after DGF. BMP-2 incubation induced α-smooth muscle actin (SMA), collagen I, and fibronectin protein expression in ARPCs. Moreover, α-SMA colocalized with CD133 in vivo after DGF. The oxidative stimulus (H(2)O(2)) induced α-SMA expression in ARPCs, while the antioxidant N-acetyl-cysteine inhibited BMP-2-induced α-SMA expression. Nox4 silencing abolished BMP-2-induced NADPH oxidase activation and myofibroblastic induction. We showed that 1) ARPCs express BMP-2, 2) this expression is increased in a model of AKI; 3) BMP-2 may induce the commitment of ARPCs toward a myofibroblastic phenotype in vitro and in vivo; and 4) this profibrotic effect is mediated by Nox4 activation. Our findings suggest a novel mechanism linking AKI with progressive renal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00328.2011 | DOI Listing |
Br J Haematol
May 2024
Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France.
Cell Oncol (Dordr)
August 2023
College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
Purpose: Androgen-refractory prostate cancer (ARPC) is one of the aggressive human cancers with metastatic capacity and resistance to androgen deprivation therapy (ADT). The present study investigated the genes responsible for ARPC progression and ADT resistance, and their regulatory mechanisms.
Methods: Transcriptome analysis, co-immunoprecipitation, confocal microscopy, and FACS analysis were performed to determine differentially-expressed genes, integrin α3β4 heterodimer, and cancer stem cell (CSC) population.
Stem Cells
October 2022
Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy.
The long non-coding RNAs (lncRNA) play an important role in several biological processes, including some renal diseases. Nevertheless, little is known about lncRNA that are expressed in the healthy kidneys and involved in renal cell homeostasis and development, and even less is known about lncRNA involved in the maintenance of human adult renal stem/progenitor cells (ARPCs) that have been shown to be very important for renal homeostasis and repair processes. Through a whole-genome transcriptome screening, we found that the HOTAIR lncRNA is highly expressed in renal progenitors and potentially involved in cell cycle and senescence biological processes.
View Article and Find Full Text PDFFront Immunol
April 2022
Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.
Int J Mol Sci
December 2020
Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy.
Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!