We examined non-linear effects of the presence of one object on the electric image of another placed at the foveal region in Gymnotus omarorum. The sensory consequences of object mutual polarization on electric images were also depicted using behavioral procedures. Image measurements show that objects whose electric image is not detectable may modify the electric image of another placed closer to the fish and suggest that detection range and discrimination parameters used for one object may be affected when the presence of others enriches the scene. Behavioral experiments confirm that these changes in object images resulting from mutual polarization may be exploited for improving perception. While conductive objects close to the skin allow the fish to detect other objects placed out of the active electrodetection range, non-conductive objects may hide objects that otherwise show clear electric images. This suggests that fish movements may orient the self-generated field to exploit object mutual polarization, increasing or decreasing the active electrolocation range. In addition, images of a nearby object may be modulated by the presence of another object placed outside the detection range and the corresponding behavioral responses suggest that a moving or impedance-changing context may modify a fish's discrimination abilities for closer objects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.067223 | DOI Listing |
FEBS J
January 2025
Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany.
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Banasthali Vidhyapith, Banasthali, Rajasthan, 304022, India.
Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Micro/nano Devices and Systems, Ministry of Education, North University of China, Taiyuan, 030051, China.
As the hyperentanglement of photon systems holds lots of remarkable applications for enhancing channel capacity with less quantum resource, the interconversion of various hyperentangled states warrants in-depth investigation and becomes a vital work for quantum information technologies. Here we realize completely mutual conversions between spatial-polarization hyperentangled Knill-Laflamme-Milburn state and hyperentangled W state for three-photon systems, resorting to hyperparallel quantum control gates and the practical nonlinear interaction of nitrogen-vacancy centers coupled with whispering-gallery-mode microresonators. The hyperparallel quantum gates, i.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
November 2024
Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.
View Article and Find Full Text PDFAnal Chem
January 2025
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany.
The identification of polar and neutral lipid species as biomarkers in complex biological samples is a key task in clinical and life sciences. Electrospray and plasma-based ionization techniques are necessary to cover the full range of lipidomes, owing to their limited molecular polarity ranges. However, combining both to generate hybrid spectra is difficult without averaging spectra, as electrospray and plasma sources operate under vastly different conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!