The unfolded-protein response (UPR), activated by sensor molecules PERK, ATF6, and IRE1 to resolve endoplasmic reticulum (ER) stress, has emerged as a key target for host cells and viruses to control the infection outcomes. The UPR regulates ER protein folding, controls cell fate upon ER stress, and plays an important role in innate immunity. We and others have shown that human cytomegalovirus (HCMV) modulates the UPR. We show here that murine CMV (MCMV), the widely used CMV model for small animal infection, regulated the UPR in a manner similar to that of HCMV. This modulatory ability was triggered by virion entry and enhanced by viral immediate-early and early gene expression. Thus, while vulnerable at early times, MCMV became resistant to exogenous ER stress at late times of infection. MCMV activated the PERK-ATF4 pathway but only induced a subset of representative ATF4 targets at levels somewhat lower than those by the ER stress inducer tunicamycin. Moreover, MCMV induced ER chaperone Bip but actively blocked IRE1-mediated Xbp1(s) protein accumulation. ATF4 depletion severely attenuated viral growth at a low multiplicity of infection by modestly reducing viral DNA synthesis and more pronouncedly inhibiting late gene transcription. Collectively, we show that the UPR is a conserved target of CMVs and identify ATF4, a key UPR component, as a factor critical for MCMV infection. This work sets the stage for using the MCMV model to explore the role of this stress response in CMV biology, particularly during infection of the host, which is difficult to study in HCMV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393534 | PMC |
http://dx.doi.org/10.1128/JVI.00200-12 | DOI Listing |
Cell Mol Life Sci
December 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Biochemistry, Western University, London, ON, Canada.
Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.
Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.
J Photochem Photobiol B
December 2024
Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Cholesterol dysregulation, disorder of neuronal membrane lipid packing, and lipid rafts lead to the synthesis and accumulation of toxic amyloid-β (Aβ), contributing to the development of Alzheimer's disease (AD). Our study shows that near-infrared (NIR) transcranial photobiomodulation therapy (tPBMT) can reduce Aβ load and restore the properties of neuronal plasma membrane, including Aβ production, bilayer order, rafts, lipid content, and Ca channels during AD. Mice in the experiments were exposed to 808-nm LED for 1 h daily over 3 months.
View Article and Find Full Text PDFMol Biol Rep
December 2024
The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China.
Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
The endoplasmic reticulum (ER) serves as the primary site for protein biosynthesis and processing, with ER homeostasis being essential for the survival of plant cells. Numerous studies have underscored the pivotal role of the ER as a battleground for host-pathogen interactions. Pathogens secrete effectors to subvert the host ER and manipulate ER-mediated defense responses, fostering an infection-permissive environment for their proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!