Scope: 2S-albumins Ara h 2 and Ara h 6 are the most widely recognized and potent allergens for peanut-allergic patients. These allergens are particularly resistant to proteolysis and the digestion products generally retain significant allergenicity. Five disulfide bridges (DB) stabilize Ara h 6 overall structure and their influence on the trypsin resistance and on the allergenicity of the digestion products was investigated.

Methods And Results: Progressive disruption of each DB was performed by site-directed mutagenesis. Successful refolding of Ara h 6 variants was confirmed by circular dichroism. Trypsin resistance, IgE-binding capacity and allergenic potency, as assessed by in vitro mediator release assay with sera from peanut-allergic patients, was not affected by the deletion of the C-terminal DB at Cys(84) -Cys(124) . Additional disruption of DB at Cys(14) -Cys(71) or at Cys(73) -Cys(115) rendered Arg(16/20) or Arg(114) susceptible to trypsinolysis, respectively, but affected principally the IgE-binding capacity of Ara h 6. DB disruption at Cys(26) -Cys(58) or at Cys(59) -Cys(107) led to an extensive proteolytic degradation and a complete loss of allergenic potency of the digestion products.

Conclusion: Selective disruption of the DB stabilizing the protease-resistant core of Ara h 6 eliminated the IgE-binding capacity of the trypsin-degradation products and their ability to trigger mast cell degranulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201100614DOI Listing

Publication Analysis

Top Keywords

trypsin resistance
12
digestion products
12
ige-binding capacity
12
allergenicity digestion
8
selective disruption
8
peanut-allergic patients
8
allergenic potency
8
ara
7
disruption
5
resistance major
4

Similar Publications

Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice.

Food Chem

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:

Article Synopsis
  • The study successfully developed antimicrobial peptides (AMPs) from quinoa using mixed-bacteria fermentation, which showed high antibacterial activity and stability.
  • Among the 9 peptide fractions analyzed, F1 was identified as the most effective in inhibiting bacterial growth in apple juice, particularly against Escherichia coli and Staphylococcus aureus.
  • The specific peptide AGAAPE demonstrated significant stability and resistance under various conditions, and its antimicrobial action was attributed to damaging bacterial membranes, making it a potential solution for preserving fresh juice.
View Article and Find Full Text PDF

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

A novel digestive protease chymotrypsin-like serine contributes to anti-BmNPV activity in silkworm (Bombyxmori).

Dev Comp Immunol

December 2024

Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China. Electronic address:

Serine proteases (SPs) are important proteases in the digestive system of lepidopteran insects. They play important roles in protein digestion, coagulation, signal transduction, hormone activation, inflammation and development. Blood-borne pyosis caused by Bombyx mori nuclear polyhedrosis virus (BmNPV) has caused serious harm to sericulture.

View Article and Find Full Text PDF

Aims: The unstable antimicrobial activity of antimicrobial peptides (AMPs) under physiological conditions (especially the degradation instigated proteases) seems to be a persistent impediment for their successful implementation in clinical trials. Consequently, our objective was to devise AMP engineering frameworks that could sustain robust antibacterial efficacy within physiological environments.

Methods: In this work, we harvested AMPs with stable antimicrobial activity under the physiological barriers through the combination of idealized amphiphiles and trypsin inhibitors.

View Article and Find Full Text PDF

Background: Epichloë endophytes provide many benefits to host plants, including enhanced insect resistance. Fungal alkaloids are usually thought to be responsible for the endophyte-conferred herbivore resistance. Nonetheless, the fungal alkaloid profiles and concentrations may vary considerably among grass-endophyte systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!