Sirtinol is a purported specific inhibitor of the nicotinamide adenine dinucleotide (NAD)-dependent type III histone deacetylase (also known as sirtuin). Sirtinol has been used extensively to identify chemopreventive/chemotherapeutic agents that modulate the sirtuins. However, the molecular effect of sirtinol other than serving as sirtuin inhibitor in cells is less clear. The present study addressed this deficiency in the literature. Based on structural similarity with plant-derived cancer preventive/therapeutic compounds such as 3', 3'-diindolylmethane, resveratrol, and genistein, we hypothesized that sirtinol may act on pathways similar to that affected by these compounds in the human prostate cancer cell LNCaP. We found that treatment of LNCaP cells with sirtinol led to concentration-dependent effects on multiple pathways. Sirtinol inhibited LNCaP cell cycle and growth that was correlated with up-regulation of cyclin-dependent kinase inhibitor 1A mRNA and protein levels. This effect of sirtinol may due in part to modulation of androgen, estrogen, and insulin-like growth factor-1 mediated pathways as sirtinol treatment led to inhibition of mRNA and protein expression of marker genes involved in these pathways. We also found sirtinol activates aryl hydrocarbon-dependent pathways in LNCaP cells. The effects of sirtinol were observed at 25 µM, a concentration lower than Ki (38 µM) for sirtuin activity. Based on these results we reasoned that sirtinol exerts pleiotropic effects in cells and that biological effects of sirtinol may not be due solely to inhibition of sirtuin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mc.21906 | DOI Listing |
Biomol Biomed
November 2024
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Coinfections with (Mtb) and HIV-1 present a critical health challenge and require treatment for survival. We found that human M1 macrophages inhibit Mtb growth, while M2 macrophages, characterized by elevated Sirt2 expression, permit Mtb growth. Further, we found that HIV-1 augmented Sirt2 gene expression in MФs.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
December 2024
Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India.
Introduction: The impact of epigenetic drugs on metastasis and the immunological microenvironment is poorly understood. In this study, we looked at how sirtinol, a SIRT1 inhibitor, affected epithelial-mesenchymal transition (EMT), metastasis, and the immune cells.
Materials And Methods: experiments were carried out using tumor conditioned medium (TCM).
Sci Rep
August 2024
Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
Patient age is critical for mesenchymal stem cell quality and differentiation capacity. We demonstrate that proliferation and adipogenic capacity of subcutaneous adipose stem cells (ASCs) from female patients declined with advanced age, associated with reduction in cell nucleus size, increase in nuclear lamina protein lamin B1/B2, and lamin A, upregulation of senescence marker p16INK4a and senescence-associated β-galactosidase activity. Adipogenic induction resulted in differentiation of adipocytes and upregulation of adipogenic genes CCAAT enhancer binding protein alpha, fatty acid binding protein 4, lipoprotein lipase, and peroxisome proliferator-activated receptor-γ, which was not affected by the Sirt-1 activator YK-3-237 or the Sirt-1 inhibitor EX-527.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!