Background: The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems.
Results: All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined.
Conclusions: Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.5675 | DOI Listing |
Sci Adv
March 2025
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
Low-energy excitations play a key role in all condensed-matter systems, yet there is limited understanding of their nature in glasses, where they correspond to local rearrangements of groups of particles. Here, we introduce an algorithm to systematically uncover these excitations up to the activation energy scale relevant to structural relaxation. We use it in a model system to measure the density of states on a scale never achieved before, confirming that this quantity shifts to higher energy under cooling, precisely as the activation energy does.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
In recent decades, substantial progress has been made in embedding molecules, nanocrystals, and nanograins into nanofibers, resulting in a new class of hybrid functional materials with exceptional physical properties. Among these materials, functional nanofibers exhibiting ferroelectric, piezoelectric, pyroelectric, multiferroic, and nonlinear optical characteristics have attracted considerable attention and undergone substantial improvements. This review critically examines these developments, focusing on strategies for incorporating diverse compounds into nanofibers and their impact on enhancing their physical properties, particularly ferroelectric behavior and nonlinear optical conversion.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Medical Faculty Foca, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina.
Tungsten disulfide (WS) nanoparticles have emerged in the biomedical field as potential theranostic agents due to their unique properties, including biocompatibility. However, their impact on the immune response remains unexplored. This study aimed to evaluate the effects of inorganic fullerene-like WS (IF-WS) nanostructures on human peripheral blood mononuclear cells (PBMCs) in vitro.
View Article and Find Full Text PDFSoft Matter
March 2025
Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, Italy.
Polyurethanes are largely employed in various fields such as building, insulation and adhesive industries, but there is the constant need to develop sustainable formulations using "green" components and feasible processes. Here, a new series of sustainable castor oil and epoxidized castor oil-based (CO/EpCO) polyurethane networks was synthetized and characterized. The added epoxy functions react with isocyanates forming oxazolidinone linkages in the gels' network, reducing the gelation time from over 3 hours up to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!