The role of persistent inward currents (PICs) in cat respiratory motoneurones (phrenic inspiratory and thoracic expiratory) was investigated by studying the voltage-dependent amplification of central respiratory drive potentials (CRDPs), recorded intracellularly, with action potentials blocked with the local anaesthetic derivative, QX-314. Decerebrate unanaesthetized or barbiturate-anaesthetized preparations were used. In expiratory motoneurones, plateau potentials were observed in the decerebrates, but not under anaesthesia. For phrenic motoneurones, no plateau potentials were observed in either state (except in one motoneurone after the abolition of the respiratory drive by means of a medullary lesion), but all motoneurones showed voltage-dependent amplification of the CRDPs, over a wide range of membrane potentials, too wide to result mainly from PIC activation. The measurements of the amplification were restricted to the phase of excitation, thus excluding the inhibitory phase. Amplification was found to be greatest for the smallest CRDPs in the lowest resistance motoneurones and was reduced or abolished following intracellular injection of the NMDA channel blocker, MK-801. Plateau potentials were readily evoked in non-phrenic cervical motoneurones in the same (decerebrate) preparations. We conclude that the voltage-dependent amplification of synaptic excitation in phrenic motoneurones is mainly the result of NMDA channel modulation rather than the activation of Ca2+ channel mediated PICs, despite phrenic motoneurones being strongly immunohistochemically labelled for CaV1.3 channels. The differential PIC activation in different motoneurones, all of which are CaV1.3 positive, leads us to postulate that the descending modulation of PICs is more selective than has hitherto been believed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406391 | PMC |
http://dx.doi.org/10.1113/jphysiol.2011.225789 | DOI Listing |
Front Neurol
October 2024
Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.
Introduction: Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral, and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals.
View Article and Find Full Text PDFSci Adv
August 2024
Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
The processing of synaptic signals in somatodendritic compartments determines neuronal computation. Although the amplification of excitatory signals by local voltage-dependent cation channels has been extensively studied, their spatiotemporal dynamics in elaborate dendritic branches remain obscure owing to technical limitations. Using fluorescent voltage imaging throughout dendritic arborizations in hippocampal pyramidal neurons, we demonstrate a unique chloride ion (Cl)-dependent remote computation mechanism in the distal branches.
View Article and Find Full Text PDFbioRxiv
May 2024
Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor.
View Article and Find Full Text PDFUnlabelled: Prestin (SLC26a5) function evolved to enhance auditory sensitivity and frequency selectivity by providing mechanical feedback via outer hair cells (OHC) into the organ of Corti. Its effectiveness is governed by the voltage-dependent kinetics of the protein's charge movements, namely, nonlinear capacitance (NLC). We study the frequency response of NLC in the mouse OHC, a species with ultrasonic hearing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!