Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A high-flux region, 5mm from the root tips of seedlings of coastal Douglas-fir (Pseudotsuga menziesii), soybean (Glycine max), zucchini (Cucurbita pepo) and pea (Pisum sativum), was monitored using a microelectrode ion flux measurement system, for changes in the net fluxes of H(+), NH(4)(+) and NO(3)(-) in response to shoot removal. In all species, careful excision of the seedling shoot had no significant effect on the net fluxes of H(+), NH(4)(+) or NO(3)(-) measured 5mm from the root tip. Experiments were carried out for up to 80min after shoot removal, and no temporal interactions were noted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2012.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!