We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to and report either the left or right ear stimulus. The hypothesis was that paying attention to the left ear stimulus (FL condition) induces a cognitive conflict, requiring cognitive control processes, not seen when paying attention to the right ear stimulus (FR condition), due to the perceptual salience of the right ear stimulus in a dichotic situation. The FL condition resulted in distinct activations in the left inferior prefrontal gyrus and caudate nucleus, while the right inferior frontal gyrus and caudate were activated in both the FL and FR conditions, and in a non-instructed (NF) baseline condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bandl.2012.03.004 | DOI Listing |
Ear Hear
December 2024
Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, Virginia, USA.
Objectives: Cervical vestibular evoked myogenic potentials (cVEMPs) reflect saccular stimulation that results in an inhibitory muscle reflex recorded over the sternocleidomastoid muscle. These responses are utilized to study basic vestibular functions and are also applied clinically. Traditionally, cVEMPs have utilized transient stimuli such as clicks and tonebursts to evoke onset responses.
View Article and Find Full Text PDFExp Brain Res
December 2024
Motor Behavior and Adapted Physical Activity Laboratory, Aristotle University, Thessaloniki, Greece.
Imperceptible noisy galvanic vestibular stimulation (nGVS) improves standing balance due to the presence of stochastic resonance (SR). There is, however, a lack of consensus regarding the optimal levels and type of noise used to elicit SR like dynamics. We aimed to confirm the presence of SR behavior in the vestibular system of young healthy adults by examining postural responses to increasing amplitudes of white and pink noise stimulation scaled to individual cutaneous perceptual threshold.
View Article and Find Full Text PDFHear Res
December 2024
Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, United States. Electronic address:
Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive.
View Article and Find Full Text PDFElife
December 2024
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Mechanical and Mechatronics Engineering, University of Stellenbosch, Joubert Street, Stellenbosch 7602, South Africa.
This study presents the development of a wireless in-ear EEG device designed to monitor brain activity during sleep and deliver auditory stimuli aimed at enhancing deep sleep. The device records EEG signals and plays a combined auditory stimulus consisting of autonomous sensory meridian response (ASMR) and 3 Hz binaural beats at a 60:30 dB ratio, intended to promote delta wave activity and non-rapid eye movement (NREM) stage 3 sleep. Fifteen participants completed this study, which included two consecutive nights: a baseline night and a testing night.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!