The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.03.053DOI Listing

Publication Analysis

Top Keywords

volatile polyfluorinated
8
polyfluorinated alkyl
8
alkyl substances
8
chromatography-mass spectrometry
8
method recoveries
8
targeted pfass
8
development analysis
4
analysis volatile
4
indoor
4
substances indoor
4

Similar Publications

DART isotope dilution high resolution mass spectrometry and F-NMR detection of fluorotelomeric alcohols in hydrolyzed food contact paper.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, USA.

Fluorotelomer-based acrylate polymers and surfactants used to grease-proof food contact paper (FCP) are potential sources of dietary exposure to perfluoroalkyl substances (PFAS). Food contact substances (FCS) containing polyfluorinated long-chains (≥C8) were voluntarily removed by their manufacturers from the U.S.

View Article and Find Full Text PDF

Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans.

Sci Total Environ

December 2024

The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands. Electronic address:

This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends.

View Article and Find Full Text PDF

Per- and polyfluorinated alkyl substances (PFAS) are a family of pollutants of high concern due to their ubiquity and negative human health impacts. The long-range marine transport of PFAS was observed during year-long deployments of passive tube samplers in the Fram Strait across three depth transects. Time weighted average concentrations ranged from 2.

View Article and Find Full Text PDF

As a large group of chemicals with diverse properties, per- and polyfluoroalkyl substances (PFAS) have found extensive application throughout consumer products, including cosmetics. Little is known about the importance of dermal uptake as a human exposure pathway for PFAS. Here we investigate a suite of listed-ingredient and residual PFAS in cosmetic products, along with their dermal bioaccessibility using incubations with artificial sweat.

View Article and Find Full Text PDF

Background: In response to COVID-19, attention was drawn to indoor air quality and interventions to mitigate airborne COVID-19 transmission. Of developed interventions, Corsi-Rosenthal (CR) boxes, a do-it-yourself indoor air filter, may have potential co-benefits of reducing indoor air contaminant levels.

Objective: We employed non-targeted and suspect screening analysis (NTA and SSA) to detect and identify volatile and semi-volatile organic contaminants (VOCs and SVOCs) that decreased in indoor air following installation of CR boxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!