The tensile properties of carbon nanotube (CNT) fibers have been widely studied. However, the knowledge of their compressive properties is still lacking. In this work, the compressive properties of both pure CNT fibers and epoxy infiltrated CNT fibers were studied using the tensile recoil measurement. The compressive strengths were obtained as 416 and 573 MPa for pure CNT fibers and CNT-epoxy composite fibers, respectively. In addition, microscopic analysis of the fiber surface morphologies revealed that the principal recoil compressive failure mode of pure CNT fiber was kinking, while the CNT-epoxy composite fibers exhibited a failure mode in bending with combined tensile and compressive failure morphologies. The effect of resin infiltration on CNT fiber compressive properties, including the compressive strength and the deformation mode, is discussed. This work expands the knowledge base of the overall mechanical properties of CNT fibers, which are essential for their application in multifunctional composites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn300857dDOI Listing

Publication Analysis

Top Keywords

cnt fibers
20
compressive properties
16
pure cnt
12
carbon nanotube
8
compressive
8
fiber compressive
8
tensile recoil
8
recoil measurement
8
fibers studied
8
cnt-epoxy composite
8

Similar Publications

This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the impact of different carbon nanostructure reinforcements and nitinol shape memory alloy (SMA) wire on the vibration behavior of a five-layer sandwich plate with a foam core, aiming to optimize stiffness and weight for sensitive industries.
  • It highlights how various reinforcements like carbon nanotubes, nanorods, and graphene platelets can significantly enhance the mechanical properties, with graphene showing the most substantial improvement in Young's modulus.
  • The research also introduces a novel construction method for the five-layer model using a vacuum pump, offering a more efficient alternative to traditional manual methods and facilitating a thorough experimental examination of its properties.
View Article and Find Full Text PDF

MXene exhibits exceptional electrical and electrochemical properties, and is regarded as a promising candidate for future wearable electronic products. However, achieving a balance between flexibility and capacitance performance in MXene-based fiber supercapacitors remains a challenge. Here, MXene/Thermoplastic polyurethane (TPU) composite fibers with good conductivity and tensile properties, were prepared by wet spinning method.

View Article and Find Full Text PDF

Shape Memory Characteristics of Injection Molded Poly(lactic acid) Multiscale Hybrid Composites.

ACS Omega

November 2024

Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.

In this study, we showed that hybrid reinforcement-a combination of nanoparticles and fibers-can provide more effective reinforcement for increasing the recovery stress of a shape memory polymer (SMP) than using either filler individually. We mixed carbon fibers (CF) and carbon nanotubes (CNT) into a poly(lactic acid) (PLA) matrix on a twin-screw extruder and injection molded specimen from the hybrid composite. Subsequently, some of the specimens were subjected to crystallizing heat treatment, while others were kept as molded to study the effects of crystallinity as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!