Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl300397vDOI Listing

Publication Analysis

Top Keywords

chemical vapor
8
vapor deposition
8
large physisorption
4
physisorption strain
4
strain chemical
4
graphene
4
deposition graphene
4
graphene copper
4
copper substrates
4
substrates graphene
4

Similar Publications

Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy.

J Colloid Interface Sci

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

Physical vapor deposition is widely used in the fabrication of organic light-emitting diodes and has the potential to adjust the density and orientation through substrate temperature control, which may lead to enhanced electrical performance. However, it is unclear whether this enhanced property is because of the horizontal molecular orientation or the increased density. The effects of the density and orientation on the electrical properties of a potential electron transport material, (3-dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (TPPO-dibenzacridine), were investigated.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications.

Molecules

January 2025

Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.

An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at = 298.15 K.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have attracted significant attention in the scientific community and in the industrial environment due to their unique structure and remarkable properties, including mechanical strength, thermal stability, electrical conductivity, and chemical inertness. Despite their potential, large-scale applications have been limited by challenges such as high production costs and catalyst contamination. In aerospace applications, CNTs have demonstrated considerable promise either in the form of thin layers or as reinforcements in polymer and metal matrices, where they enhance mechanical, thermal, and electromagnetic performance in lightweight composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!