This paper describes a novel on-chip microarray platform based on an electrochemiluminescence resonance energy transfer (ECL-RET) strategy for rapid assay of cancer cell surface biomarkers. This platform consists of 64 antigen-decorated CdS nanorod spots with the diameter of 1.0 cm uniformly distributed on 16 indium tin oxide (ITO) strips, which is coated with a multichannel decorated polydimethylsiloxane (PDMS) slice to realize multiplexed determination of antigens. To shorten the immune reaction time in the microchannels and simplify the device, magnetic stirring and four-channel universal serial bus (USB) ports for plug-and-play were used. When Ru(bpy)(3)(2+) labeled antibodies were selectively captured by the corresponding antigens on the CdS nanorod spot array, ECL-RET from the CdS nanorod (donor) by cathodic emission in the presence of K(2)S(2)O(8) to Ru(bpy)(3)(2+) (acceptor) occurred. With signal amplification of Ru(bpy)(3)(2+) and competitive immunoassay, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and prostate specific antigen (PSA) as models were detected on this microfluidic device via recording the increased ECL-RET signals on electrode surfaces. Furthermore, this multiplexed competitive immunoassay was successfully used for detecting cancer cell surface antigens via the specific antibody-cell interactions and cell counting via cell surface receptors and antigens on the CdS nanorod surface. This platform provides a rapid and simple but sensitive approach with microliter-level sample volume and holds great promise for multiplexed detection of antigens and antigen-specific cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac300551e | DOI Listing |
Alzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Rensselaer Polytechnic Institute, Troy, NY, USA.
Background: Heparan sulfate (HS) interacts with many important proteins. These interactions are primarily driven by electrostatics, with specificity determined by sulfation patterns. Although 3-O-sulfation is a rare modification in HS, several genome-wide association studies (GWAS) revealed that the Hs3st1 gene, encoding HS-3-O-sulfotransferase-1, is significantly linked to late onset AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Virginia, Charlottesville, VA, USA.
Background: The microvasculature of the central nervous system (CNS), which delivers oxygen and nutrients and forms a critical barrier protecting the CNS, is deleteriously affected by both Alzheimer's Disease (AD) and Type 2 Diabetes (T2D). Previous studies have shown pericyte dropout and vessel constriction in brain capillaries in AD, while other studies have shown pericyte bridging and dropout in retinal capillaries in T2D. T2D patients have increased risk of AD, suggesting potentially related microvascular pathological mechanisms.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!