The Role of the Habenula in Nicotine Addiction.

J Addict Res Ther

Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA.

Published: October 2011

To thrive in any given environment, mobile creatures must be able to learn from the outcomes of both successful and disappointing events. To learn from success, the brain relies on signals originating in the ventral tegmental area and substantia nigra that result in increased release of dopamine in the striatum. Recently, it was shown that to learn from disappointment the brain relies on signals originating in the lateral habenula, which indirectly inhibit dopaminergic activity. The habenula is a small brain region that has been shown in mice to be critical for the appearance of nicotine withdrawal symptoms. The nicotinic acetylcholine receptor subunits expressed in the medial habenula are necessary to observe withdrawal symptoms in mice, and blocking nicotinic activity in the medial habenula only is sufficient to precipitate withdrawal in dependent mice. In addition, recent genome wide association studies have shown that in humans, genetic variants in the same nicotinic receptor subunits are at least partially responsible for the genetic predisposition to become a smoker. The habenula is linked not only to nicotine, but also to the effects of several other drugs. We postulate that the continuous use of drugs of abuse results in habenular hyperactivity as a compensatory mechanism for artificially elevated dopamine release. Drug withdrawal would then result in non-compensated habenular hyperactivity, and could be thought of as a state of continuous disappointment (or a negative emotional state), driving repeated drug use. We believe that drugs that alter habenular activity may be effective therapies against tobacco smoke and drug addiction in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321348PMC
http://dx.doi.org/10.4172/2155-6105.S1-002DOI Listing

Publication Analysis

Top Keywords

brain relies
8
relies signals
8
signals originating
8
withdrawal symptoms
8
receptor subunits
8
medial habenula
8
habenular hyperactivity
8
habenula
5
role habenula
4
habenula nicotine
4

Similar Publications

Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.

PLoS Comput Biol

January 2025

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.

Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a chronic neuropsychiatric disorder characterized by disturbances in cognitive, perceptual, social, emotional, and behavioral functions. The conventional SZ diagnosis relies on subjective assessments of individuals by psychiatrists, which can result in bias, prolonged procedures, and potentially false diagnoses. This emphasizes the crucial need for early detection and treatment of SZ to provide timely support and minimize long-term impacts.

View Article and Find Full Text PDF

Understanding brain function relies on identifying spatiotemporal patterns in brain activity. In recent years, machine learning methods have been widely used to detect connections between regions of interest (ROIs) involved in cognitive functions, as measured by the fMRI technique. However, it's essential to match the type of learning method to the problem type, and extracting the information about the most important ROI connections might be challenging.

View Article and Find Full Text PDF

Zn transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn levels resulting in deleterious effects.

View Article and Find Full Text PDF

Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans.

J Neurosci Methods

January 2025

Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:

Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!