Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394943 | PMC |
http://dx.doi.org/10.1074/mcp.M111.014167 | DOI Listing |
Mol Cell Proteomics
July 2012
Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin 13353, Germany.
Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!