The enteropathogen Salmonella enterica serovar Typhimurium employs a suite of tightly regulated virulence factors within the intracellular compartment of phagocytic host cells resulting in systemic dissemination in mice. A type VI secretion system (T6SS) within Salmonella pathogenicity island 6 (SPI-6) has been implicated in this process; however, the regulatory inputs and the roles of noncore genes in this system are not well understood. Here we describe four clusters of noncore T6SS genes in SPI-6 based on a comparative relationship with the T6SS-3 of Burkholderia mallei and report that the disruption of these genes results in defects in intracellular replication and systemic dissemination in mice. In addition, we show that the expression of the SPI-6-encoded Hcp and VgrG orthologs is enhanced during late stages of macrophage infection. We identify six regions that are transcriptionally active during cell infections and that have regulatory contributions from the regulators of virulence SsrB, PhoP, and SlyA. We show that levels of protein expression are very weak under in vitro conditions and that expression is not enhanced upon the deletion of ssrB, phoP, slyA, qseC, ompR, or hfq, suggesting an unknown activating factor. These data suggest that the SPI-6 T6SS has been integrated into the Salmonella Typhimurium virulence network and customized for host-pathogen interactions through the action of noncore genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370595 | PMC |
http://dx.doi.org/10.1128/IAI.06205-11 | DOI Listing |
Genome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFEur J Med Res
January 2025
Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing RD., Beijing, 100853, China.
Background: Chronic kidney disease (CKD) carries the highest population attributable risk for mortality among all comorbidities in chronic heart failure (CHF). No studies about the association between inferior vena cava (IVC) diameter and all-cause mortality in patients with the comorbidity of CKD and CHF has been published.
Methods: In this retrospective cohort study, a total of 1327 patients with CHF and CKD were included.
Microb Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!