AI Article Synopsis

  • Combinatorial libraries of peptide macrocycles are important for developing high-affinity ligands for various targets.
  • Researchers created new linkers to produce genetically encoded bicyclic peptides and tested how these linkers affect the peptides’ conformations.
  • Findings revealed that using different linkers significantly alters the peptide's structure and function, demonstrating the critical role of linkers in designing diverse peptide macrocycles.

Article Abstract

Combinatorial libraries of structurally diverse peptide macrocycles offer a rich source for the development of high-affinity ligands to targets of interest. In this work we have developed linkers for the generation of genetically encoded bicyclic peptides and tested whether the peptides cyclised by them have significant variations in their backbone conformations. Two new cyclisation reagents, each containing three thiol-reactive groups, efficiently and selectively cyclised linear peptides containing three cysteine moieties. When the mesitylene linker of the bicyclic peptide PK15, a potent inhibitor of plasma kallikrein (K(i)=2 nM), was replaced by the new linkers, its inhibitory activity dropped by a factor of more than 1000, suggesting that the linkers impose different conformations on the peptide. Indeed, structural analysis by solution-state NMR revealed different NOE constraints in the three bicyclic peptides, indicating that these relatively small linkers at the centres of bicyclic peptide structures significantly influence the conformations of the peptides. These results demonstrate the prominent structural role of linkers in peptide macrocycles and suggest that application of different cyclisation linkers in a combinatorial fashion could be an attractive means to generate topologically diverse macrocycle libraries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201200049DOI Listing

Publication Analysis

Top Keywords

bicyclic peptides
12
structurally diverse
8
cyclisation linkers
8
linkers impose
8
backbone conformations
8
peptide macrocycles
8
bicyclic peptide
8
linkers
7
peptides
6
bicyclic
5

Similar Publications

Insights into Heterocycle Biosynthesis in the Cytotoxic Polyketide Alkaloid Janustatin A from a Plant-Associated Bacterium.

Biochemistry

January 2025

Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .

View Article and Find Full Text PDF

Assessing the Impact of the Leader Peptide in Protease Inhibition by the Microviridin Family of RiPPs.

Biomedicines

December 2024

Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM 87131, USA.

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. RiPPs have attracted attention for the ability to generate and screen libraries of these compounds for useful biological activities. To facilitate this screening, it is useful to be able to do so with the leader peptide still present.

View Article and Find Full Text PDF

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

Introduction: Ischemia followed by reperfusion in organ transplantations can lead to ischemia-reperfusion (I-R) injury, which is associated with oxidative stress and inflammatory responses. Alpha-pinene is an organic terpene with well-known antioxidant, anti-inflammatory, and anti-apoptotic properties. This study examines the preventive effects of alpha-pinene against renal I-R-induced kidney dysfunction, oxidative and inflammatory status, apoptosis, and histopathology changes.

View Article and Find Full Text PDF

Highly Efficient Transpeptidase-Catalyzed Isopeptide Ligation.

J Am Chem Soc

January 2025

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.

Transpeptidases are specialized enzymes that have evolved for site-selective modification of peptides and proteins at their backbone termini. Approaches for adapting transpeptidases to catalyze side chain modifications are substantially more restricted, and typically rely on large recognition tags or require specific reaction conditions that are not easily compatible with broader applications. Here we show that the engineered asparaginyl ligase AEP1 catalyzes direct isopeptide ligation by accepting an internal 2,3-diaminopropionic acid (Dap) residue adjacent to Leu, a motif that mimics the canonical N-terminal Gly-Leu substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!