AI Article Synopsis

  • Researchers used time-resolved synchrotron X-ray diffraction to study the fast hydration processes that happen right after cement is mixed with water.* -
  • The study focused on how polycarboxylate ether additives affect the early-stage formation of crystalline products during cement hydration.* -
  • Findings suggest that these additives play a significant role in determining the molecular structure of the initial hydration products in cement.*

Article Abstract

Setting cement: highly dynamic hydration processes that occur during the first seconds of cement hydration were studied by time-resolved synchrotron X-ray diffraction. Polycarboxylate ether additives were found to influence the formation of the initial crystalline hydration products on a molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201200993DOI Listing

Publication Analysis

Top Keywords

synchrotron x-ray
8
x-ray diffraction
8
cement hydration
8
seconds building's
4
building's life-in
4
life-in situ
4
situ synchrotron
4
diffraction study
4
study cement
4
hydration
4

Similar Publications

Antimicrobial resistance is a significant cause of mortality globally due to infections, a trend that is expected to continue to rise. As existing treatments fail and new drug discovery slows, the urgency to develop novel antimicrobial therapeutics grows stronger. One promising strategy involves targeting bacterial systems exclusive to pathogens, such as the transcription regulator protein GabR.

View Article and Find Full Text PDF

Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting.

Anal Chem

December 2024

Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, United States.

Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>10) dynamic range of AA reactivity with OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low OH reactivities.

View Article and Find Full Text PDF

An objective soft x-ray flat-field spectrograph employing a laminar-type bilayer coated, varied-line-spacing, spherical grating was designed to improve the detection limit and sensitivity of soft x-ray flat-field spectrographs in a region of 250-550 eV. As a design criterion, spectral flux, SF, [Hatano et al., Appl.

View Article and Find Full Text PDF

Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.

Acta Crystallogr D Struct Biol

January 2025

SR Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.

Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement.

View Article and Find Full Text PDF

Development of high-performance and inexpensive electrocatalysts for oxygen evolution reaction (OER) at neutral pH is important for direct seawater splitting and organic electrosynthesis but remains challenging due to the sluggish OER kinetics and diverse side reactions inherent to the constituents of working electrolytes. Herein, we report on a P:NiFe electrode, containing P-doped NiFe alloy, as an excellent electrocatalyst for hydrogen evolution reaction (HER) and OER pre-catalyst for efficient OER in both seawater and organic electrolyte for adiponitrile (ADN) electrosynthesis at neutral pH. Fe and P species modulate the coordination environment of nickel sites, which enables the simultaneous formation of OER-active nickel species and FePO passivation layer, thus transforming HER-active P:NiFe to OER-active a-P:NiFe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!