Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots. Paired gluteofemoral and abdominal subcutaneous AT samples were analyzed for triglyceride fatty acid composition and mRNA expression. Finally, the triglyceride fatty acid composition of isolated human preadipocytes was determined. Relative release of 16:1n-7 was markedly higher from gluteofemoral AT compared with abdominal subcutaneous AT. Stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in endogenous 16:1n-7 production, was more highly expressed in gluteofemoral AT and was associated with greater enrichment of 16:1n-7. Furthermore, isolated human preadipocytes from gluteofemoral AT displayed a higher content of SCD1-derived fatty acids. We demonstrate that human gluteofemoral AT plays a major role in determining systemic concentrations of the lipokine palmitoleate. Moreover, this appears to be an inherent feature of gluteofemoral AT. We propose that the beneficial metabolic properties of lower-body AT may be partly explained by the intrinsically greater production and release of palmitoleate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357300 | PMC |
http://dx.doi.org/10.2337/db11-1810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!