Transcription factor binding sites (TFBSs) are DNA sequences of 6-15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA. We make use of the random forest algorithm to flexibly exploit both types of information. Results in this study show that both the structural method and the NPD method can be valuable for the prediction of TFBSs. Moreover, their predictive values seem to be complementary, even to the widely used position weight matrix (PWM) method. This led us to combine all three methods. Results obtained for five eukaryotic TFs with different DNA-binding domains show that our method improves classification accuracy for all five eukaryotic TFs compared with other approaches. Additionally, we contrast the results of seven smaller prokaryotic sets with high-quality data and show that with the use of high-quality data we can significantly improve prediction performance. Models developed in this study can be of great use for gaining insight into the mechanisms of TF binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413102PMC
http://dx.doi.org/10.1093/nar/gks283DOI Listing

Publication Analysis

Top Keywords

random forest
8
transcription factor
8
factor binding
8
binding sites
8
prediction tfbss
8
eukaryotic tfs
8
high-quality data
8
flexible integrative
4
integrative approach
4
approach based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!