A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjt6k690thdcb9874je9kj4ktrae3fd3l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive oxygen species regulate osteopontin expression in a murine model of postischemic neovascularization. | LitMetric

AI Article Synopsis

  • Researchers identified that osteopontin (OPN) is vital for blood vessel formation (neovascularization) when oxygen supply is low (ischemia), with previous studies showing issues in OPN knockout models.
  • * A study using mice with limb ischemia showed that ischemia boosts OPN levels and hydrogen peroxide (H2O2) production, indicating that H2O2 plays a key role in increasing OPN during ischemic conditions.
  • * Blocking H2O2 reduced OPN expression and hindered new blood vessel formation, while increasing OPN enhanced this process, suggesting OPN’s importance as a potential treatment target for improving blood flow recovery.*

Article Abstract

Objective: Previous findings from our laboratory demonstrated that neovascularization was impaired in osteopontin (OPN) knockout animals. However, the mechanisms responsible for the regulation of OPN expression in the setting of ischemia remain undefined. Therefore, we sought to determine whether OPN is upregulated in response to ischemia and hypothesized that hydrogen peroxide (H(2)O(2)) is a critical component of the signaling mechanism by which OPN expression is upregulated in response to ischemia in vivo.

Methods And Results: To determine whether ischemic injury upregulates OPN, we used a murine model of hindlimb ischemia. Femoral artery ligation in C57BL/6 mice significantly increased OPN expression and H(2)O(2) production. Infusion of C57BL/6 mice with polyethylene glycol-catalase (10 000 U/kg per day) or the use of transgenic mice with smooth muscle cell-specific catalase overexpression blunted ischemia-induced OPN, suggesting ischemia-induced OPN expression is H(2)O(2)-dependent. Decreased H(2)O(2)-mediated OPN blunted reperfusion and collateral formation in vivo. In contrast, the overexpression of OPN using lentivirus restored neovascularization.

Conclusions: Scavenging H(2)O(2) blocks ischemia-induced OPN expression, providing evidence that ischemia-induced OPN expression is H(2)O(2) dependent. Decreased OPN expression impaired neovascularization, whereas overexpression of OPN increased angiogenesis, supporting our hypothesis that OPN is a critical mediator of postischemic neovascularization and a potential novel therapeutic target for inducing new vessel growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376537PMC
http://dx.doi.org/10.1161/ATVBAHA.112.248922DOI Listing

Publication Analysis

Top Keywords

opn expression
28
ischemia-induced opn
16
opn
15
expression
8
murine model
8
postischemic neovascularization
8
upregulated response
8
response ischemia
8
c57bl/6 mice
8
expression h2o2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!