Background: NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells.
Design And Methods: We investigated the potential interactions between the 3'-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells.
Results: Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. CONCLUSIONS These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436229 | PMC |
http://dx.doi.org/10.3324/haematol.2011.058529 | DOI Listing |
Mol Cancer
January 2025
Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model.
View Article and Find Full Text PDFBackground: FT596 is an induced pluripotent stem-cell (iPSC)-derived chimeric antigen receptor (CAR) natural killer (NK) cell therapy with three antitumour modalities: a CD19 CAR; a high-affinity, non-cleavable CD16 Fc receptor; and interleukin-15-interleukin-15 receptor fusion. In this study, we aimed to determine the recommended phase 2 dose (RP2D) and evaluate the safety and tolerability of FT596 as monotherapy and in combination with rituximab. We also aimed to evaluate the antitumour activity and characterise the pharmacokinetics of FT596 as monotherapy and in combination with rituximab.
View Article and Find Full Text PDFStructure
January 2025
Novartis Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. Electronic address:
Inflammatory bowel disease (IBD) consists of chronic conditions that severely impact a patient's health and quality of life. Interleukin-10 (IL-10), a potent anti-inflammatory cytokine has strong genetic links to IBD susceptibility and has shown strong efficacy in IBD rodent models, suggesting it has great therapeutic potential. However, when tested in clinical trials for IBD, recombinant human IL-10 (rhIL-10) showed weak and inconsistent efficacy due to its short half-life and pro-inflammatory properties that counteract the anti-inflammatory efficacy.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:
Standard flow cytometry-based assays can determine the cytotoxicity of immune effector cells, but it is challenging to monitor the dynamic processes of cytotoxicity. Here, we present a protocol for continuous observation of natural killer (NK) cell-mediated cytotoxicity with microwell arrays using an automated microscope. We describe steps for isolating and labeling primary NK cells, loading cells onto microwell arrays, monitoring target wells, and image analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!