Intracellular pattern recognition receptors such as the nucleotide-binding oligomerization domain (NOD)-like receptors family members are key for innate immune recognition of microbial infection and may play important roles in the development of inflammatory diseases, including rheumatic diseases. In this study, we evaluated the role of NOD1 and NOD2 on development of experimental arthritis. Ag-induced arthritis was generated in wild-type, NOD1(-/-), NOD2(-/-), or receptor-interacting serine-threonine kinase 2(-/-) (RIPK2(-/-)) immunized mice challenged intra-articularly with methylated BSA. Nociception was determined by electronic Von Frey test. Neutrophil recruitment and histopathological analysis of proteoglycan lost was evaluated in inflamed joints. Joint levels of inflammatory cytokine/chemokine were measured by ELISA. Cytokine (IL-6 and IL-23) and NOD2 expressions were determined in mice synovial tissue by RT-PCR. The NOD2(-/-) and RIPK2(-/-), but not NOD1(-/-), mice are protected from Ag-induced arthritis, which was characterized by a reduction in neutrophil recruitment, nociception, and cartilage degradation. NOD2/RIPK2 signaling impairment was associated with a reduction in proinflammatory cytokines and chemokines (TNF, IL-1β, and CXCL1/KC). IL-17 and IL-17 triggering cytokines (IL-6 and IL-23) were also reduced in the joint, but there is no difference in the percentage of CD4(+) IL-17(+) cells in the lymph node between arthritic wild-type and NOD2(-/-) mice. Altogether, these findings point to a pivotal role of the NOD2/RIPK2 signaling in the onset of experimental arthritis by triggering an IL-17-dependent joint immune response. Therefore, we could propose that NOD2 signaling is a target for the development of new therapies for the control of rheumatoid arthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1004190 | DOI Listing |
Front Immunol
May 2024
State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of and and their signal circle are less understood in teleost fish. In this study, with the cloning of and in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays.
View Article and Find Full Text PDFJ Dent Res
June 2024
Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
is an important contributor to the persistence of chronic apical periodontitis. However, the mechanism by which infection in the root canals and dentinal tubules affects periapical tissue remains unclear. Bacterial extracellular vesicles (EVs) act as natural carriers of microbe-associated molecular patterns (MAMPs) and have recently attracted considerable attention.
View Article and Find Full Text PDFGene
February 2024
Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Obstructive sleep apnea syndrome (OSAS) is highly related with asthma from the epidemiology to pathogenesis, while the underlying mechanism is still unclear. Herein, we aimed to reveal the shared gene signatures and molecular mechanisms underlying the coexistence of OSAS and asthma and verified relating pathway in mouse models. We downloaded GSE75097 of OSAS and GSE165934 of asthma from GEO database and performed differential expression analysis and functional enrichment analysis to screen differentially expressed genes (DEGs) and potential pathogenic pathway.
View Article and Find Full Text PDFFront Pharmacol
May 2023
Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China.
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies.
View Article and Find Full Text PDFAutophagy
March 2023
Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
The NOD1-NOD2-RIPK2-NFKB/NF-κB pro-inflammatory axis plays a significant role in regulating the immune response to bacterial infection. However, an excess of NFKB-dependent cytokine response can be detrimental and, thus, should be kept under control to maintain the innate immune balance. In our recent study, first, we showed that bacterial infection induces the biogenesis of RIPK2 oligomers (RIPosomes) that are recruited around the bacteria to enhance an NFKB-dependent pro-inflammatory response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!