Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.

J Neurophysiol

Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, Université de Montréal, Montreal, Quebec, Canada.

Published: July 2012

While walking in a straight path, changes in speed result mainly from adjustments in the duration of the stance phase while the swing phase remains relatively invariant, a basic feature of the spinal central pattern generator (CPG). To produce a broad range of locomotor behaviors, the CPG has to integrate modulatory inputs from the brain and the periphery and alter these swing/stance characteristics. In the present work we raise the issue as to whether the CPG can adapt or reorganize in response to a chronic change of supraspinal inputs, as is the case after spinal cord injury (SCI). Kinematic data obtained from six adult cats walking at different treadmill speeds were collected to calculate the cycle and subphase duration at different stages after a first spinal hemisection at T(10) and after a subsequent complete SCI at T(13) respectively aimed at disconnecting unilaterally and then totally the spinal cord from its supraspinal inputs. The results show, first, that the neural control of locomotion is flexible and responsive to a partial or total loss of supraspinal inputs. Second, we demonstrate that a hemisection induces durable plastic changes within the spinal locomotor circuitry below the lesion. In addition, this study gives new insights into the organization of the spinal CPG for locomotion such that phases of the step cycle (swing, stance) can be independently regulated for adapting to speed and also that the CPGs controlling the left and right hindlimbs can, up to a point, be regulated independently.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00073.2012DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
supraspinal inputs
12
cord injury
8
changes spinal
8
spinal locomotor
8
locomotor circuitry
8
spinal
7
incomplete spinal
4
injury promotes
4
promotes durable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!