The current studies assessed the utility of freshly plated hepatocytes, cryopreserved plated hepatocytes, and cryopreserved plated HepaRG cells for the estimation of inactivation parameters k(inact) and K(I) for CYP3A. This was achieved using a subset of CYP3A time-dependent inhibitors (fluoxetine, verapamil, clarithromycin, troleandomycin, and mibefradil) representing a range of potencies. The estimated k(inact) and K(I) values for each time-dependent inhibitor were compared with those obtained using human liver microsomes and used to estimate the magnitude of clinical pharmacokinetic drug-drug interaction (DDI). The inactivation kinetic parameter, k(inact), was most consistent across systems tested for clarithromycin, verapamil, and troleandomycin, with a high k(inact) of 0.91 min(-1) observed for mibefradil in HepaRG cells. The apparent K(I) estimates derived from the various systems displayed a range of variability from 3-fold for clarithromycin (5.4-17.7 μM) to 6-fold for verapamil (1.9-12.6 μM). In general, the inactivation kinetic parameters derived from the cell systems tested fairly replicated what was observed in time-dependent inhibition studies using human liver microsomes. Despite some of the observed differences in inactivation kinetic parameters, the estimated DDIs derived from each of the tested systems generally agreed with the clinically reported DDI within approximately 2-fold. In addition, a plated cell approach offered the ability to conduct longer primary incubations (greater than 30 min), which afforded improved ability to identify the weak time-dependent inhibitor fluoxetine. Overall, results from these studies suggest that in vitro inactivation parameters generated from plated cell systems may be a practical approach for identifying time-dependent inhibitors and for estimating the magnitude of clinical DDIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.112.044644 | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States.
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFChem Rev
January 2025
Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!