Transforming growth factor-β-activated kinase 1 (TAK1) appears to play a role in inhibiting apoptotic death in response to multiple stresses. To assess the role of TAK1 in X-ray induced apoptosis and cell death, we irradiated parental and siRNA-TAK1-knockdown HeLa cells. Changes in gene expression levels with and without TAK1-knockdown were also examined after irradiation to elucidate the molecular mechanisms involved. After X-ray irradiation, cell death estimated by the colony formation assay increased in the TAK1-knockdown cells. Apoptosis induction, determined by caspase-3 cleavage, suggested that the increased radiosensitivity of the TAK1-knockdown cells could be partially explained by the induction of apoptosis. However, cell cycle analysis revealed that the percentage of irradiated cells in the G(2)/M-phase decreased, and those in the S- and SubG(1)-phases increased due to TAK1 depletion, suggesting that the loss of cell cycle checkpoint regulation may also be involved in the observed increased radiosensitivity. Interestingly, significant differences in the induction of NF-κB, p38 MAPK and ERK phosphorylation, the major downstream molecules of TAK1, were not observed in TAK1 knockdown cells compared to their parental control cells after irradiation. Instead, global gene expression analysis revealed differentially expressed genes after irradiation that bioinformatics analysis suggested are associated with cell cycle regulatory networks. In particular, CDKN1A (coding p21(WAF1)), which plays a central role in the identified network, was up-regulated in control cells but not in TAK1 knockdown cells after X-ray irradiation. Si-RNA knockdown of p21 decreased the percentage of cells in the G(2)/M phase and increased the percentage of cells in the S- and SubG(1)-phases after X-ray irradiation in a similar manner as TAK-1 knockdown. Taken together, these findings suggest that the role of TAK1 in cell death, cell cycle regulation and apoptosis after X irradiation is independent of NF-κB, p38 MAPK, and ERK phosphorylation, and dependent, in part, on p21 induction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/rr2792.1 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America.
Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFThyroid
January 2025
Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India.
The study aimed to analyze the long-term outcomes of [Lu]Lu-DOTAGA.FAPi dimer therapy in individuals diagnosed with radioiodine-resistant (RAI-R) follicular cell-derived thyroid cancer. In this retrospective study, 73 patients with RAI-R follicular thyroid carcinoma who had undergone multiple lines of previous treatments were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!