We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO(2), the plasma-treated SiO(2)-polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO(2) nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic-inorganic functional nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am300300fDOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
cold atmospheric-pressure
8
atmospheric-pressure plasmas
8
nanoparticles treated
4
treated cold
4
plasmas improve
4
improve dielectric
4
dielectric performance
4
performance organic-inorganic
4
nanocomposites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!