Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3006053DOI Listing

Publication Analysis

Top Keywords

evanescent wave
8
wave cavity
8
cavity ring-down
8
ring-down spectroscopy
8
spectroscopy ew-crds
8
adsorption kinetics
8
functionalized interfaces
8
adsorption rates
8
adsorption
7
surface
5

Similar Publications

We demonstrate the heterogeneous integration of GaInAsSb-GaSb photodiodes on 220 nm SOI photonic integrated circuits (PICs) using the micro-transfer-printing (μTP) technology, for operation in the short-wave infrared (SWIR) wavelength region. Utilizing an evanescent coupling scheme between a silicon waveguide and a III-V structure, the device exhibits a room temperature responsivity of 1.23 and 1.

View Article and Find Full Text PDF

The intermediate phase produced by the complexation of metal ions and solvent molecules usually occurs in the crystallization process of perovskite single crystal or film. Effective monitoring of intermediate-phase evolution is beneficial to the control of crystal quality. However, it is difficult to realize.

View Article and Find Full Text PDF

Metasurfaces have demonstrated significant potential in optical encryption and anti-counterfeiting due to their incredible capability of manipulating various light properties. However, previous metasurface-encryption methods did not sufficiently explore the spatial frequency aspect, particularly regarding evanescent waves. Here, we propose an encryption scheme by introducing evanescent waves into the encoding and decoding processes.

View Article and Find Full Text PDF

We present an all-fiber-based laser gas analyzer (LGA) employing quartz-enhanced photoacoustic spectroscopy (QEPAS) and a side-polished fiber (SPF). The LGA comprises a custom quartz tuning fork (QTF) with 0.8 mm prong spacing, two acoustic micro-resonators (mR) located on either side of the prong spacing, and a single-mode fiber containing a 17 mm polished section passing through both mRs and QTF.

View Article and Find Full Text PDF

Dual-resonance optical fiber lossy mode resonance immunoprobe for serum PSA detection.

Biosens Bioelectron

December 2024

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.

Biomarker detection has emerged as an essential complementary approach for early-stage screening of tumors. Conventional methods are constrained by bulky systems, cumbersome operation steps, and low detection accuracy. Here, we demonstrate a dual-resonance optimally configured lossy mode resonance (LMR) immunoprobe for detecting prostate-specific antigen (PSA), a biomarker for prostate cancer (PCa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!