Abstract: Mycorrhizal fungi are an important member of soil microorganisms, not only rich in genetic diversity and species diversity, but also in functional diversity, which mainly manifest in: 1) affecting the origin, evolution, and distribution of terrestrial plants, 2) promoting plant growth and development, 3) enhancing plant tolerance against environmental stress, 4) remedying polluted and degraded soils, 5) promoting agricultural, forestry, and animal husbandry production, and 6) maintaining ecological equilibrium and stabilizing ecosystem and its sustainable productivity. With the development of technique and research, more functions contributed by mycorrhizal fungi would be discovered.
Download full-text PDF |
Source |
---|
Front Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China.
The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively.
View Article and Find Full Text PDFEcology
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China.
Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH) over nitrate (NO) during litter decomposition. However, the impact of AMF's absorption of NH on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH on litter N metabolic characteristics by enriching NH via AMF suppression and nitrification inhibition in a subtropical forest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!