Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The impact of hemostatic agents on postoperative adhesion formation has not been well studied. We hypothesized that hemostatic agents would be a significant nidus for adhesion formation and that a resorbable barrier would effectively reduce adhesions to hemostatic agents. Four commercial hemostatic agents, each composed of a different biomaterial matrix, were implanted in female Sprague-Dawley rats, and adhesion formation was examined 7 days after surgery. In separate studies, the effects of serosal trauma (via cecal abrasion), added blood, and the presence of chemically modified sodium hyaluronate/carboxymethylcellulose (HA/CMC) barrier on adhesion formation to hemostatic agents were studied. Significant adhesions formed to hemostatic agents even in the absence of traumatized tissue. When applied after cecal abrasion, the incidence of adhesions to the hemostatic agents increased. Addition of blood to this model increased adhesion formation even further, causing adhesions in every animal in the study. An HA/CMC adhesion barrier reduced adhesions to hemostatic agents in the presence of serosal trauma and maintained effectiveness even in the presence of blood. In conclusion, hemostatic agents potentiated adhesion formation at the site of application in a model without trauma. In more challenging models, their adhesiogenic contribution was overwhelmed by trauma and blood. HA/CMC adhesion barrier applied over hemostatic agents at the time of surgery provided significant protection against postoperative adhesions in these preclinical models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!