[A versatile role of transcription regulator CTCF in epigenetics and diseases].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Published: April 2012

CTCF as a multivalent eukaryotic transcription factor plays a diverse range of roles in regulation of various genes through the binding of its 11 zinc fingers to CTCF consensus sites or various proteins. CTCF is involved in multiple aspects of epigenetic regulation including regulation of chromatin remodeling and genomic imprinting. Deregulation of these processes result in a group of diseases are characterized by growth, development, and neurological dysfunction. This paper reviews recent researches that highlight the links between CTCF, epigenetics and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.1003-9406.2012.02.013DOI Listing

Publication Analysis

Top Keywords

ctcf epigenetics
8
ctcf
5
versatile role
4
role transcription
4
transcription regulator
4
regulator ctcf
4
epigenetics diseases]
4
diseases] ctcf
4
ctcf multivalent
4
multivalent eukaryotic
4

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced dosage in a human model of CHD, with variations in response across individual cells.

View Article and Find Full Text PDF

The six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

While inputs regulating CD4 T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!