Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation.

Biochimie

Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.

Published: June 2012

Arabidopsis mitochondria contain two NAD(+)-malic enzymes, NAD-ME1 and NAD-ME2. These proteins have similar affinity for their substrates but display opposite regulation by fumarate, which strongly stimulates NAD-ME1 but inhibits NAD-ME2 activity. Here, the interaction of NAD-ME1 and -2 with fumarate was investigated by kinetic approaches, urea denaturation assays and intrinsic fluorescence quenching, in the absence and presence of NAD(+). Fumarate inhibited NAD-ME2 at saturating, but not at low, levels of NAD(+), and it behaved as competitive inhibitor with respect to L-malate. In contrast, NAD-ME1 fumarate activation was higher at suboptimal NAD(+) concentrations. In the absence of cofactor, the fluorescence of both NAD-ME1 and -2 is quenched by fumarate. However, for NAD-ME2 the quenching arises from a collisional phenomenon, while in NAD-ME1 the fluorescence decay can be explained by a static process that involves fumarate binding to the protein. Furthermore, the residue Arg84 of NAD-ME1 is essential for fumarate binding, as the mutant protein R84A exhibits a collisional quenching by this metabolite. Together, the results indicate that the differential fumarate regulation of Arabidopsis NAD-MEs, which is further modulated by NAD(+) availability, is related to the gaining of an allosteric site for fumarate in NAD-ME1 and an active site-associated inhibition by this C(4)-organic acid in NAD-ME2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2012.03.017DOI Listing

Publication Analysis

Top Keywords

fumarate binding
12
fumarate
9
differential fumarate
8
nad+-malic enzymes
8
nad-me1
8
nad-me1 fumarate
8
nad-me2
5
binding arabidopsis
4
arabidopsis nad+-malic
4
enzymes produces
4

Similar Publications

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Members of the genus are the conventional medicinal plants used in the therapeutic management of numerous ailments, especially for their antioxidant and pharmacological activities. The crude extract of was profiled using high-resolution GC-MS and LC-MS/MS techniques to determine possible bioactive compounds that are vital to the antioxidant activity. A total of 52 and 63 bioactive compounds have been detected in GC-MS chromatograms using different solvents (methanol and ethanol) in leaf extracts, representing the presence of certain bioactive compounds.

View Article and Find Full Text PDF

The antifungal targets of the new fungicide -(naphthalen-1-yl)-phenazine-1-carboxamide (NNPCN) are still incomplete, limiting its application. To identify potential new targets of NNPCN and facilitate target hunting, a suite of techniques was employed to conduct experiments on . Nine potential targets were identified, exhibiting strong binding affinity to NNPCN, as indicated by binding free energies below -100.

View Article and Find Full Text PDF

Bioinformatics and Computationally Supported Redesign of Aspartase for β-Alanine Synthesis by Acrylic Acid Hydroamination.

ACS Catal

January 2025

Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.

View Article and Find Full Text PDF

Introduction: Antiretroviral therapy (ART) increases the life expectancy of persons living with HIV (PLWH), but not without potentially serious adverse effects. Tenofovir disoproxil fumarate (TDF) can cause nephrotoxicity, manifesting as acute kidney injury (AKI) that may persist after treatment discontinuation. Kidney injury biomarkers such as kidney injury molecule-1 (KIM-1), retinol-binding protein-4 (RBP-4), interleukin-18 (IL-18), and neutrophil gelatinase-associated lipocalin (NGAL) can aid early diagnosis and predict TDF-associated nephrotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!