In vivo receptor occupancy assay of histamine H₃ receptor antagonist in rats using non-radiolabeled tracer.

J Pharmacol Toxicol Methods

Pharmacokinetics and Drug Metabolism, Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, India.

Published: October 2012

Introduction: Rapid and reliable preclinical receptor occupancy measurement at the target organ in relevant species is critical in accelerating the drug hunting process. The aim of this study was to develop in vivo receptor occupancy assay for histamine H₃ receptors (H₃R) using the non-radiolabeled GSK189254 as a tracer and to correlate the occupancy-exposure relationship for H₃R antagonists in the rats.

Methods: In vivo tracer characterization studies like brain regional distribution, dose and time dependent uptake were carried out for GSK189254 in the male Wistar rats after intravenous administration. The tracer specificity was validated by pretreatment with H₃ antagonists like ciproxifan, thioperamide, and GSK334429. The brain regional tracer levels and H₃R antagonist concentrations in plasma and brain were quantified using liquid chromatography tandem mass spectrometry. Receptor occupancy was calculated using the ratio of total binding (striatum or frontal cortex) to the nonspecific binding (cerebellum) of the tracer in animals pretreated with H₃R antagonist.

Results: High degree of selective distribution of GSK189254 was found in striatum, frontal cortex, and low level in the cerebellum. Regional distribution of GSK189254 in the rat brain was consistent to that of H₃R distribution mapped using ³H or ¹¹C-GSK189254 in human, porcine, and rat. The calculated occupancy ED₅₀ values in the frontal cortex were 0.14, 1.58, and 0.14 mg/kg for ciproxifan, thioperamide, and GSK334429, respectively. The plasma EC₅₀ values (ng/mL) were found to be 2.33, 292.2, and 3.54 for ciproxifan, thioperamide and GSK334429, respectively.

Discussion: Results from mass spectroscopy based approach to determine H₃R occupancy in rat brain is comparable with reported radiolabeled method by scintillation spectroscopy. In conclusion, non-radiolabeled GSK189254 was successfully employed as a tracer for assessing the H₃R occupancy in rats and it can be used as a preclinical tool for evaluation of novel H₃R ligands in the drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2012.03.003DOI Listing

Publication Analysis

Top Keywords

receptor occupancy
16
ciproxifan thioperamide
12
thioperamide gsk334429
12
frontal cortex
12
vivo receptor
8
occupancy assay
8
assay histamine
8
histamine h₃
8
h₃r
8
non-radiolabeled gsk189254
8

Similar Publications

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

J Pharmacokinet Pharmacodyn

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!