The plant growth retardant uniconazole (UNI), which has been used as an effective inhibitor of ent-kaurene oxidase (CYP701A) involved in gibberellin biosynthesis, also strongly inhibits ABA 8'-hydroxylase (CYP707A), a key enzyme in abscisic acid catabolism. Azole P450 inhibitors bind to the P450 active site by both coordinating to the heme-iron atom via an sp(2) nitrogen and interacting with surrounding protein residues through a lipophilic region. We hypothesized that poor selectivity of UNI may result from its small molecular size and flexible conformation that allows it to fit into active sites differing in size and shape. To find a selective inhibitor of CYP701A based on this hypothesis, we examined inhibitory activities of three types of UNI analogues, which were conformationally constrained, enlarged in width, and enlarged in length, against recombinant rice CYP701A6 and Arabidopsis CYP707A3. Conformationally restricted analogues, UFAP2 and UFAP2N, inhibited CYP701A6 as strongly as UNI, whereas it inhibited CYP707A3 less than UNI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.03.028DOI Listing

Publication Analysis

Top Keywords

conformationally restricted
8
ent-kaurene oxidase
8
uni
5
restricted uniconazole
4
uniconazole analogue
4
analogue specific
4
specific inhibitor
4
inhibitor rice
4
rice ent-kaurene
4
oxidase cyp701a6
4

Similar Publications

Conformationally Restricted Grp94-Selective Inhibitors.

ACS Omega

January 2025

Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States.

Selective inhibition of glucose regulated protein 94 (Grp94), the most structurally unique isoform of heat shock protein 90 (Hsp90), has been implicated in the treatment of various disease states, including primary open-angle glaucoma and metastatic cancer. In this study, nine analogues were designed and synthesized by conformationally restricting , a second generation Grp94-selective inhibitor. Conformational constraints were applied to restrict the rotatable bonds and to bias the benzyl moiety into the Grp94 site 1 pocket as well as to reduce the entropic penalty paid upon binding.

View Article and Find Full Text PDF

Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.

View Article and Find Full Text PDF
Article Synopsis
  • Macrocycles are seen as effective tools for targeting hard-to-reach proteins inside cells, but improving them from initial linear structures is still a work in progress.
  • Researchers studied linker modification to enhance macrocycle properties, focusing on FKBP51 and producing over 140 versions with different linkers.
  • They discovered that these modifications led to better affinity, stability, and solubility of the macrocycles compared to earlier models, and emphasized the importance of understanding the 3D shapes of these molecules in drug development.
View Article and Find Full Text PDF

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.

View Article and Find Full Text PDF

Cobalt-catalyzed conformationally restricted alkylarylation enables divergent access to Csp-rich N-heterocycles.

Chem Sci

September 2024

Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China

Article Synopsis
  • Csp-rich N-heterocycles are gaining attention in drug discovery due to their unique structure and spatial orientation, surpassing traditional aromatic compounds.
  • A new cobalt-catalyzed alkylarylation method allows for the efficient creation of diverse Csp-rich N-hetero(spiro)cycles using simple conditions, achieving over 70 different structures.
  • The methodology shows great promise for medicinal chemistry, as it offers broad applicability with good compatibility for functional groups and potential for developing pharmaceutically active molecules.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!