Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross-compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole-genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high-density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome-level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub-species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2012.05017.xDOI Listing

Publication Analysis

Top Keywords

draft genome
12
genome assembly
12
sativus var
12
cucumber
9
domestication cucumber
8
high-density genetic
8
var hardwickii
8
cucumber genome
8
genetic map
8
cultivated cucumber
8

Similar Publications

GDBr: genomic signature interpretation tool for DNA double-strand break repair mechanisms.

Nucleic Acids Res

January 2025

Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.

View Article and Find Full Text PDF

Background: The Prostatype score (P-score) is a prognostic biomarker that integrates a three-gene (IGFBP3, F3, and VGLL3) signature derived from prostate biopsy samples, with key clinical parameters, including prostate-specific antigen (PSA) levels, Gleason grade, and tumor stage at diagnosis. The test has demonstrated superior predictive accuracy for prostate cancer outcomes compared with traditional risk categorization systems such as D'Amico. Notably, it reclassifies a higher proportion of patients into the low-risk category, making them eligible for active surveillance.

View Article and Find Full Text PDF

Sixty-five draft genome sequences of and from table egg layer chickens.

Microbiol Resour Announc

January 2025

Egg and Poultry Production Safety Research Unit, USDA Agricultural Research Service, Athens, Georgia, USA.

We present the draft genomic sequences of 65 isolates of spp. (38 and 27 ) isolated from table egg-layer chickens, which are not generally associated with human transmission. Up to this time, there are no publicly available genomic sequences of isolated from laying hens.

View Article and Find Full Text PDF

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!