Fabrication of inhalable spore like pharmaceutical particles for deep lung deposition.

Int J Pharm

Sin-China Nano Technology Center, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.

Published: July 2012

An innovative strategy of fabricating uniform spore like drug particles to improve pulmonary drug delivery efficiency was disclosed in the present study. Spore like particles were prepared through combination of high gravity controlled precipitation and spray drying process with insulin as model drug first, showing rough surface and hollow core. The shell of such spore-like particle was composed of nanoparticles in loose agglomerate and could form nanosuspension upon contacting antisolvent. Further characterization confirmed secondary structure and bio-activity was well preserved in spore like particles of insulin. Stable aerosol performance at different dosages with fine powder fraction (FPF) of 80% and comparable FPF (69-76%) for formulated powder were achieved, significantly higher than marketed product Exubera. On the other hand spore like particles of bovine serum albumin, lysozyme and salbutamol sulfate showed similar high FPF of 80%, regardless of different shape of primary nanoparticles, indicating various application of this new process in significant improvement of pulmonary drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2012.03.044DOI Listing

Publication Analysis

Top Keywords

spore particles
12
pulmonary drug
8
drug delivery
8
fpf 80%
8
spore
5
particles
5
fabrication inhalable
4
inhalable spore
4
spore pharmaceutical
4
pharmaceutical particles
4

Similar Publications

Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from f. sp. .

Plants (Basel)

December 2024

Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.

View Article and Find Full Text PDF

Fungi infect humans when environmental spores are inhaled into the lungs. The lung is a heterogeneous organ. Conducting airways, including bronchi and bronchioles, branch until terminating in the alveolar airspace where gas exchange occurs.

View Article and Find Full Text PDF
Article Synopsis
  • Fungal contamination in hospital air can impact the health of staff, patients, and caregivers, with a study in Wuhan revealing that factors like temperature, humidity, and seasonal changes significantly influence fungal concentration rather than disease type or personnel density.
  • The analysis showed that airborne fungal particle sizes are normally distributed, with the highest proportions found in specific size ranges, but the median diameter remained below 3.19 μm across different departments in both winter and summer.
  • The findings suggest a need for improved filtration efficiency for specific fungal particle sizes and the use of appropriate antifungal treatments and hygiene practices in hospital air management.
View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Background And Purpose: Bladder cancer has high recurrence rates despite standard treatments, necessitating innovative therapeutic approaches. This study introduces magnetically powered microrobots utilizing Traditional Chinese Medicine (TCM) Spora Lygodii (SL) encapsulated with Doxorubicin (DOX) and FeO nanoparticles (Fe/DOX@SL) for targeted therapy.

Methods: FeO nanoparticles were synthesized via co-precipitation and combined with SL spores and DOX through dip-coating to form Fe/DOX@SL microrobots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!