AI Article Synopsis

  • mGluRs play a crucial role in synaptic transmission and are potential targets for treating CNS disorders due to their ability to fine-tune synaptic efficacy.
  • A novel interaction was discovered between long Homer-3 proteins and the S8 ATPase subunit of the 26S proteasome, which affects the degradation process of the mGluR1α receptor.
  • Silencing Homer-3 increased mGluR1α levels, indicating that these proteins are essential for transporting ubiquitinated mGluR1α to the 26S proteasome, thus influencing synaptic modulation.

Article Abstract

The metabotropic glutamate receptors (mGluRs) fine-tune the efficacy of synaptic transmission. This unique feature makes mGluRs potential targets for the treatment of various CNS disorders. There is ample evidence to show that the ubiquitin proteasome system mediates changes in synaptic strength leading to multiple forms of synaptic plasticity. The present study describes a novel interaction between post-synaptic adaptors, long Homer-3 proteins, and one of the 26S proteasome regulatory subunits, the S8 ATPase, that influences the degradation of the metabotropic glutamate receptor 1α (mGluR1α). We have shown that the two human long Homer-3 proteins specifically interact with human proteasomal S8 ATPase. We identified that mGluR1α and long Homer-3s immunoprecipitate with the 26S proteasome both in vitro and in vivo. We further found that the mGluR1α receptor can be ubiquitinated and degraded by the 26S proteasome and that Homer-3A facilitates this process. Furthermore, the siRNA mediated silencing of Homer-3 led to increased levels of total and plasma membrane-associated mGluR1α receptors. These results suggest that long Homer-3 proteins control the degradation of mGluR1α receptors by shuttling ubiquitinated mGluR-1α receptors to the 26S proteasome via the S8 ATPase which may modulate synaptic transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882371PMC
http://dx.doi.org/10.1111/j.1471-4159.2012.07752.xDOI Listing

Publication Analysis

Top Keywords

26s proteasome
16
metabotropic glutamate
12
synaptic transmission
12
long homer-3
12
homer-3 proteins
12
degradation metabotropic
8
glutamate receptor
8
receptor 1α
8
proteasomal atpase
8
mglur1α receptors
8

Similar Publications

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood.

View Article and Find Full Text PDF

Role of ubiquitin-proteasome pathway in budded virus egress and GP64 surface distribution in Bombyx mori nucleopolyhedrovirus.

J Gen Virol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.

The Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that affects the silkworm, , causing substantial economic losses in sericulture. This study investigates the mechanisms underlying budded virus egress, focusing on the roles of the ubiquitin-proteasome pathway (UPP) machinery. BmNPV produces two virion types: budded virions (BVs) and occlusion-derived virions (ODVs), which differ in their envelope origins and functions.

View Article and Find Full Text PDF

DNA-protein crosslinks (DPCs) are endogenous and chemotherapy-induced genotoxic DNA lesions and, if not repaired, lead to embryonic lethality, neurodegeneration, premature ageing, and cancer. DPCs are heavily polyubiquitinated, and the SPRTN protease and 26S proteasome emerged as two central enzymes for DPC proteolysis. The proteasome recognises its substrates by their ubiquitination status.

View Article and Find Full Text PDF

FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection.

New Phytol

December 2024

Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.

Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!