Quasiclassical trajectory calculations have been performed for the H + H'X(v) → X + HH' abstraction and H + H'X(v) → XH + H' (X = Cl, F) exchange reactions of the vibrationally excited diatomic reactant at a wide collision energy range extending to ultracold temperatures. Vibrational excitation of the reactant increases the abstraction cross sections significantly. If the vibrational excitation is larger than the height of the potential barrier for reaction, the reactive cross sections diverge at very low collision energies, similarly to capture reactions. The divergence is quenched by rotational excitation but returns if the reactant rotates fast. The thermal rate coefficients for vibrationally excited reactants are very large, approach or exceed the gas kinetic limit because of the capture-type divergence at low collision energies. The Arrhenius activation energies assume small negative values at and below room temperature, if the vibrational quantum number is larger than 1 for HCl and larger than 3 for HF. The exchange reaction also exhibits capture-type divergence, but the rate coefficients are larger. Comparisons are presented between classical and quantum mechanical results at low collision energies. At low collision energies the importance of the exchange reaction is enhanced by a roaming atom mechanism, namely, collisions leading to H atom exchange but bypassing the exchange barrier. Such collisions probably have a large role under ultracold conditions. The calculations indicate that for roaming to occur, long-range attractive interaction and small relative kinetic energy in the chemical reaction at the first encounter are necessary, which ensures that the partners can not leave the attractive well. Large orbital angular momentum of the primary products (equivalent to large rotational excitation in a unimolecular reaction) is favorable for roaming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp301243a | DOI Listing |
J Trauma Nurs
January 2025
Department of Surgery, Morristown Medical Center, Morristown, New Jersey.
Background: Motorcycle and equestrian accidents can share similar trauma mechanisms and can result in serious injuries.
Objective: This study aims to analyze variations in injuries and safety standards through types, severity, and outcomes of traumatic injuries in both motorcycle and equestrian riders.
Methods: Using the 2020 ACS TQIP database, we split patients into two groups based on their primary injury.
J Phys Chem C Nanomater Interfaces
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, School of Advanced Sciences, VIT-AP University, Besides AP Secretariate, Amaravati, Andhra Pradesh, 522237, India.
Heavy hexagonal coding is a type of quantum error-correcting coding in which the edges and vertices of a low-degree graph are assigned auxiliary and physical qubits. While many topological code decoders have been presented, it is still difficult to construct the optimal decoder due to leakage errors and qubit collision. Therefore, this research proposes a Re-locative Guided Search optimized self-sparse attention-enabled convolutional Neural Network with Long Short-Term Memory (RlGS2-DCNTM) for performing effective error correction in quantum codes.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.
In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!