The hydrolysis of N-methyl O-phenyl sulfamate (1) has been studied as a model for steroid sulfatase inhibitors such as Coumate, 667 Coumate, and EMATE. At neutral pH, simulating physiological conditions, hydrolysis of 1 involves an intramolecular proton transfer from nitrogen to the bridging oxygen atom of the leaving group. Remarkably, this proton transfer is estimated to accelerate the decomposition of 1 by a factor of 10(11). Examination of existing kinetic data reveals that the sulfatase PaAstA catalyzes the hydrolysis of sulfamate esters with catalytic rate accelerations of ~10(4), whereas the catalytic rate acceleration generated by the enzyme for its cognate substrate is on the order of ~10(15). Rate constants for hydrolysis of a wide range of sulfuryl esters, ArOSO(2)X(-), are shown to be correlated by a two-parameter equation based on pK(a)(ArOH) and pK(a)(ArOSO2XH).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345139PMC
http://dx.doi.org/10.1021/jo300386uDOI Listing

Publication Analysis

Top Keywords

hydrolysis n-methyl
8
n-methyl o-phenyl
8
o-phenyl sulfamate
8
steroid sulfatase
8
sulfatase inhibitors
8
proton transfer
8
catalytic rate
8
hydrolysis
5
proton-in-flight mechanism
4
mechanism spontaneous
4

Similar Publications

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

Two-dimensional (2D) chromium(III) sulfide has recently attracted increased attention from researchers due to its interesting electronic and magnetic properties and has great potential for application in spintronics and optoelectronics to create sensitive photodetectors. However, the synthesis of 2D CrS crystals is still a challenging task. At present, the mainly used method is vapor deposition, which is a poorly scalable, time-consuming, and expensive process.

View Article and Find Full Text PDF

We investigate the preparation of mesoscopic SnO nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming uniform SnO films by both stabilizing the hydrolysis products of Sn(IV) sources and acting as a base liquid during nanoparticle growth. The hydrolysis of Sn(IV) was controlled by adjusting the reaction temperature to as low as 110 °C for 48 h.

View Article and Find Full Text PDF

Towards More Sustainable Schiff Base Carboxylate Anodes for Sodium-Ion Batteries.

Materials (Basel)

October 2024

Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Bismine sodium salt (BSNa), a Schiff base with two sodium carboxylates, has shown promising electrochemical performance as an anode material. However, its synthesis involves toxic reagents and generates impurities, requiring significant solvent use for purification. This study introduces a novel synthetic method using sodium hydroxide as the sole reagent, which acts as both a base and Na source in the ion exchange step.

View Article and Find Full Text PDF

Unveiling the genetic basis and metabolic rewiring behind the galactose-positive phenotype in a Streptococcus thermophilus mutant.

Microbiol Res

December 2024

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China. Electronic address:

Streptococcus thermophilus (S. thermophilus) is a widely used starter culture in dairy fermentation, but most strains are galactose-negative and only metabolize glucose from lactose hydrolysis. In this study, we aimed to uncover the mechanisms underlying the acquisition of a stable galactose-positive (Gal) phenotype in a mutant strain of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!