Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a method for obtaining superparamagnetic nanoparticles based on iron oxide and their water suspensions. The structure and size of nanoparticles were confirmed by transmission electron microscopy, dynamic light scattering, and X-ray diffraction analysis. The nanoparticles also contained a fluorescent dye Dil C18. Cytotoxicity of obtained aqueous suspension was studied by MTT assay; low toxicity of nanoparticles was demonstrated. High T2-relaxivity of nanoparticles allows using them as a contrast agent for MRI. After incubation of cerebellar sections with nanoparticles vectorized with antibodies to antigen AMVB1, specific visualization of blood vessels was detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-011-1426-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!