A comparison of different approaches to unravel the latent structure within metabolic syndrome.

PLoS One

Division of Biostatistics, Centre for Epidemiology and Biostatistics, University of Leeds, Leeds, United Kingdom.

Published: July 2012

Background: Exploratory factor analysis is a commonly used statistical technique in metabolic syndrome research to uncover latent structure amongst metabolic variables. The application of factor analysis requires methodological decisions that reflect the hypothesis of the metabolic syndrome construct. These decisions often raise the complexity of the interpretation from the output. We propose two alternative techniques developed from cluster analysis which can achieve a clinically relevant structure, whilst maintaining intuitive advantages of clustering methodology.

Methods: Two advanced techniques of clustering in the VARCLUS and matroid methods are discussed and implemented on a metabolic syndrome data set to analyze the structure of ten metabolic risk factors. The subjects were selected from the normative aging study based in Boston, Massachusetts. The sample included a total of 847 men aged between 21 and 81 years who provided complete data on selected risk factors during the period 1987 to 1991.

Results: Four core components were identified by the clustering methods. These are labelled obesity, lipids, insulin resistance and blood pressure. The exploratory factor analysis with oblique rotation suggested an overlap of the loadings identified on the insulin resistance and obesity factors. The VARCLUS and matroid analyses separated these components and were able to demonstrate associations between individual risk factors.

Conclusions: An oblique rotation can be selected to reflect the clinical concept of a single underlying syndrome, however the results are often difficult to interpret. Factor loadings must be considered along with correlations between the factors. The correlated components produced by the VARCLUS and matroid analyses are not overlapped, which allows for a simpler application of the methodologies and interpretation of the results. These techniques encourage consistency in the interpretation whilst remaining faithful to the construct under study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317545PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034410PLOS

Publication Analysis

Top Keywords

metabolic syndrome
16
factor analysis
12
varclus matroid
12
latent structure
8
structure metabolic
8
exploratory factor
8
risk factors
8
insulin resistance
8
oblique rotation
8
matroid analyses
8

Similar Publications

Background: Cholangiocarcinoma (CCA) is a rare neoplasm, with high mortality, originating in the bile ducts. Its incidence is higher in Eastern countries due to the endemic prevalence of liver parasites. Factors such as metabolic syndrome, smoking, and pro-inflammatory conditions are also linked to the disease.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to metabolic syndrome. Identifying novel, easily measurable biomarkers could significantly enhance the diagnosis and management of NAFLD in clinical settings. Recent studies suggest that immunoinflammatory biomarkers-specifically, the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR)-may offer diagnostic value for NAFLD.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.

View Article and Find Full Text PDF

Background: In vascular tissue, macrophages and inflammatory cells produce the enzyme lipoprotein- associated phospholipase A2 (Lp-PLA2). Treatment with fibrates decreases Lp-PLA2 levels in individuals with obesity and metabolic syndrome; however, these findings have not been fully clarified.

Objective: The goal of this study was to investigate the possible effects of fibrate therapy on Lp-PLA2 mass and activity through a meta-analysis of clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!