Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo.

Cancer Lett

Division of Cell & Molecular Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Cyprus International University, Biotechnology Research Centre, Haspolat, North Cyprus, Mersin 10, Turkey. Electronic address:

Published: October 2012

AI Article Synopsis

  • Epigenetic changes increase the expression of voltage-gated sodium channels (VGSCs) in cancer cells, potentially promoting behaviors that aid metastasis.
  • Research indicates functional VGSCs enhance cell motility and may facilitate the spread of cancer.
  • In a study using a rat model of prostate cancer, blocking VGSC activity significantly reduced lung metastases by over 40% and improved the lifespan of the subjects.

Article Abstract

Epigenetic upregulation of voltage-gated sodium channels (VGSCs) has been reported in a number of carcinoma cell lines and tissues. Furthermore, a large body of experimental evidence suggested that functional VGSC expression enhances various in vitro cell behaviours, such as directional motility, that would be involved in the metastatic cascade. However, it is not known if VGSC activity promotes metastasis in vivo. Here, using the Copenhagen rat model of prostate cancer and blocking VGSC activity in primary tumours with tetrodotoxin, we show (1) that the number of lung metastasis is reduced by >40% and (2) that lifespan is significantly improved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2012.03.036DOI Listing

Publication Analysis

Top Keywords

voltage-gated sodium
8
activity promotes
8
prostate cancer
8
metastasis vivo
8
vgsc activity
8
sodium channel
4
channel activity
4
promotes prostate
4
cancer metastasis
4
vivo epigenetic
4

Similar Publications

Rationale: Developmental and epileptic encephalopathy (DEE) defines a group of severe and heterogeneous neurodevelopmental disorders. The voltage-gated potassium channel subfamily 2 voltage-gated potassium channel α subunit encoded by the KCNB1 gene is essential for neuronal excitability. Previous studies have shown that KCNB1 variants can cause DEE.

View Article and Find Full Text PDF

Background: Familial hemiplegic migraine (FHM) types 1-3 are associated with protein-altering genetic variants in , and , respectively. These genes have also been linked to epilepsy. Previous studies primarily focused on phenotypes, examining genetic variants in individuals with characteristic FHM symptoms.

View Article and Find Full Text PDF

Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.

Int J Biol Macromol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:

A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.

View Article and Find Full Text PDF

Introduction: There is a high unmet need for safe and effective non-opioid medicines to treat moderate to severe pain without risk of addiction. Voltage-gated sodium channel 1.8 (Na1.

View Article and Find Full Text PDF

Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.

J Gen Physiol

March 2025

Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia.

Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!