Arginase-1, a marker for M2 phenotype alternatively activated macrophages, inhibits inflammation and is associated with phagocytosis of cell debris and apoptotic cells. We analyzed the expression of arginase-1, a competitive enzyme of inducible nitric oxide synthase (iNOS), in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis (EAE). Western blot analysis showed that both arginase-1 and iNOS significantly increased in the spinal cords of rats at the peak stage of EAE compared with the expression level in control animals (p<0.05) and declined thereafter. Immunofluorescent staining demonstrated that increased expression of arginase-1 in EAE spinal cords was confirmed in macrophages as well as in some neurons and astrocytes that were constitutively positive for arginase-1 in normal spinal cords. A semiquantitative analysis by immunofluorescence showed that in EAE lesions, an increased level of arginase-1 immunoreactivity was matched with ED1-positive macrophages, which were also positive for activin A, a marker for the M2 phenotype. Taking all of these findings into consideration, we postulate that the increased level of arginase-1, which is partly from M2 macrophages, contributes to the modulation of neuroinflammation in EAE lesions, possibly through the reduction of nitric oxide in the lesion via competition with iNOS for the use of L-arginine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2012.03.023DOI Listing

Publication Analysis

Top Keywords

spinal cords
12
cords lewis
8
lewis rats
8
rats experimental
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
immunohistochemical study
4
arginase-1
4
study arginase-1
4
arginase-1 spinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!