Tellurium-nanowire-coated glassy carbon electrodes (TNGCEs) have been fabricated and employed for selective and sensitive detection of dopamine (DA). TNGCEs were prepared by direct deposition of tellurium nanowires, 600 ± 150 nm in length and 16 ± 3 nm in diameter, onto glassy carbon electrodes, which were further coated with Nafion to improve their selectivity and stability. Compared to the GCE, the TNGCE is more electroactive (by approximately 1.9-fold) for DA, and its selectivity toward DA over ascorbic acid (AA) and uric acid (UA) is also greater. By applying differential pulse voltammetry, at a signal-to-noise ratio of 3, the TNGCE provides a limit of detection of 1 nM for DA in the presence of 0.5mM AA and UA. Linearity (R(2)=0.9955) of the oxidation current at 0.19 V against the concentration of DA is found over the range 5 nM-1 μM. TNGCEs have been applied to determine the concentration of dopamine to be 0.59 ± 0.07 μM in PC12 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2012.03.011 | DOI Listing |
Sensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFFoods
January 2025
School of Biotechnology, Jiangnan University, Wuxi 214000, China.
The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Fiber System Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea.
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ).
View Article and Find Full Text PDFMolecules
January 2025
College of Sciences, Shanghai University, Shanghai 200444, China.
Dihydromyricetin (DMY), as the main active ingredient in , is a naturally occurring flavonoid that has attracted extensive attention for its multiple biological activities. For the quick and accurate measurement of DMY, a novel electrochemical sensor based on a glassy carbon electrode (GCE) modified with a cobalt metal-organic framework (Co-MOF) was proposed in this work. The Co-MOF was synthesized via a single-step hydrothermal process using Co(NO)·6HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!