The results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hairgrass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate the effects of long-term chronic exposure to radionuclides are discussed. Plant populations growing in areas with relatively low levels of pollution are characterized by an increased level of both cytogenetic disturbances and genetic diversity. Although ionizing radiation causes primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable from the knowledge of elementary mechanisms of cellular effects formation. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage could be accompanied by a decrease in reproductive capacity. However, in less contaminated sites, because of the scarcity of data available, a steady relationship between cytogenetic effects and reproductive capacity was not revealed. Under radioactive contamination of the plant's environment, a population's resistance to exposure may increase. However, there are radioecological situations where an enhanced radioresistance has not evolved or has not persisted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2012.03.007DOI Listing

Publication Analysis

Top Keywords

plant populations
12
effects long-term
8
long-term chronic
8
chronic exposure
8
exposure radionuclides
8
radioecological situations
8
reproductive capacity
8
effects
5
populations
5
plant
4

Similar Publications

Nigerian medicinal plants with potential anticancer activity-a review.

Explor Target Antitumor Ther

December 2024

Center for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.

Despite the fact that life expectancies are increasing and the burden of infectious diseases is decreasing, global cancer incidence rates are on the rise. Cancer outcome metrics are dismal for low- and middle-income countries (LMICs), including sub-Saharan Africa, where adequate resources and infrastructure for cancer care and control are lacking. Nigeria, the most populous country in Africa, exemplifies the miserable situation.

View Article and Find Full Text PDF

spp. and hepatitis E virus (HEV) are significant foodborne zoonotic pathogens that impact the health of livestock, farmers, and the general public. This study aimed to identify biosecurity measures (BSMs) against these pathogens on swine farms in Europe, the United States, and Canada.

View Article and Find Full Text PDF

Introduction: Chinese kale ( var. alboglabra), is an annual herb belonging to the Brassica genus of Cruciferae, and is one of the famous specialty vegetables of southern China. Some varieties show bright green leaf (BGL) traits and have better commerciality.

View Article and Find Full Text PDF

The non-indigenous dung beetle () can effectively reproduce using the dung of indigenous eastern North American mammals.

PeerJ

January 2025

Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.

Non-indigenous dung beetle (Coleoptera: Scarabaeoidea) species in North America are important contributors to ecosystem functions, particularly in pasture-based livestock systems. Despite the significant body of research surrounding non-indigenous (and often invasive) dung beetles in agricultural contexts, there has been minimal study concerning the impact that these species may have on indigenous dung beetle populations in natural environments. Here we examine the possible impact of the introduced dung beetle on indigenous dung beetle populations via use of indigenous mammal dung.

View Article and Find Full Text PDF

Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!