The electronic structure and stability of the XMg(8) clusters (X = Be, B, C, N, O, and F) are studied using first principles theoretical calculations to understand the variation in bonding in heteroatomic clusters which mix simple divalent metals with main group dopants. We examine these progressions with two competing models, the first is a distorted nearly free electron gas model and the second is a molecular orbital picture examining the orbital overlap between the dopant and the cluster. OMg(8) is found to be the most energetically stable cluster due to strong bonding of O with the Mg(8) cluster. BeMg(8) has the largest HOMO-LUMO gap due to strong hybridization between the Mg(8) and the Be dopant states that form a delocalized pool of 18 valence electrons with a closed electronic shell due to crystal field effects. Be, B, and C are best described by the nearly free electron gas model, while N, O, and F are best described through molecular orbital concepts.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3700086DOI Listing

Publication Analysis

Top Keywords

molecular orbital
12
orbital concepts
8
xmg8 clusters
8
free electron
8
electron gas
8
gas model
8
best described
8
metallic molecular
4
orbital
4
concepts xmg8
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!