Black carbon particulate matter emission factors for buoyancy-driven associated gas flares.

J Air Waste Manag Assoc

Energy and Emissions Research Laboratory, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada.

Published: March 2012

Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2011.650040DOI Listing

Publication Analysis

Top Keywords

emission factors
12
black carbon
8
particulate matter
8
associated gas
8
oil gas
8
gas industry
8
upstream oil
8
range conditions
8
gas
7
emission
5

Similar Publications

This study aimed to evaluate the concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOX) around the Qom (a province in Iran) combined cycle power plant in relation to seasonal variations and fuel type from December 2014 to May 2015. Passive sampling was used in three monitoring sites around the power plant to assess noncarcinogenic health risks associated with exposure to SO2 and NOX. Results showed the higher concentrations of NOX and SO2 in winter than in spring.

View Article and Find Full Text PDF

Freshwater ecotoxicity characterization factors for PFASs.

Integr Environ Assess Manag

January 2025

Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, Sweden.

This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.

View Article and Find Full Text PDF

Waste has emerged as a pressing concern for the environment, primarily stemming from the processes of urbanization and industrialization. The substantial volumes of waste generated pose a serious threat to the environment, as they spread out harmful substances in the soil and release methane emissions into the atmosphere. To effectively address this issue, this study explores the impact of municipal and industrial waste, as well as waste-related innovation on the load capacity factor (LCF) from 2005 to 2020.

View Article and Find Full Text PDF

Dendriform pulmonary ossification in military combat veterans: A case series.

Respir Med Case Rep

December 2024

Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA.

Dendriform pulmonary ossification (DPO) is a rare condition characterized by mature bone formation in the lung. DPO has been linked to various conditions, but little is known about the link between DPO and hazardous airborne exposures. We queried research databases of military personnel evaluated for deployment-related respiratory diseases at two occupational pulmonary medicine clinics (Colorado, USA) for diagnoses of DPO, and summarized demographics, Gulf War military deployment history, medical history, and pulmonary function testing.

View Article and Find Full Text PDF

Background: Chronic exposure to low-level environmental lead (Pb) causes several health effects in humans. Its biomonitoring by non-invasive biomarkers is imperative to identify Pb exposure in the occupationally unexposed general public.

Objective: To quantify urinary lead (U-Pb) and urinary δ-Aminolevulinic acid (ALA) in the general population of West Bengal, India, and identify the impact of routine life activities (smoking habit, traveling, and cooking activities) and sociodemographic factors on U-Pb and U-ALA levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!